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Executive Summary 

The effects of biomass burning emissions on regional air quality are well documented. This study 

produced a comprehensive evaluation of the impacts of biomass burning on regional ozone, fine 

particulate matter (PM2.5) and carbon monoxide, along with other species formed due to resulting 

chemistry involving biomass emissions. The evaluation was conducted over the continental United 

States, southern Canada and northern Mexico for the ozone seasons (April-October) of 2012, 2013 

and 2014. The National Center for Atmospheric Research (NCAR)’s Fire Inventory from NCAR 

(FINN) biomass burning inventory was used as input for the Community Multiscale Air Quality 

(CMAQ) chemical transport model. Meteorological fields were input by the Weather Research 

and Forecasting (WRF) model. Anthropogenic emissions fields were provided by the National 

Emissions Inventory of 2011, speciated and spatio-temporally allocated using the Sparse Matrix 

Operator Kernel Emissions (SMOKE) model. Biogenic emissions were modeled using the 

Biogenic Emissions Inventory System (BEIS) instead of MEGAN, since using the latter was 

shown to result in model over-prediction of several VOCs and ozone, as indicated by the literature. 

The model was evaluated against observations from the TCEQ’s CAMS and the U.S. 

Environmental Protection Agency’s (EPA) AQS network. This study has marked improvements 

over the previous biomass burning evaluations, which are as follows: 

a) A longer simulation episode spanning three ozone seasons (April-October); e.g., the 

previous FINN evaluation conducted by AQRP project 14-011 spanned 45 days.  

b) Use of dynamic chemical boundary conditions which give a more realistic physical 

representation of 3-D concentration fields. 

c) Use of data assimilation (grid nudging) to improve meteorological fields and consequently 

model performance. 

d) Use of a physically representative plume-rise model to evaluate the fire injection height 

and vertical profiles. 

For evaluation and analysis, we divided our simulation to spring (April-May), summer (June-

August), and fall (September-October) seasons. During 2012, broadly, in-situ (monitor) data 

showed ozone hotspots of 60-70 ppb across the Western Mountain region and in California, which 

the model did a good job reproducing.  During this ozone season, biomass fires added up to 3 ppb 

in southern Canada in June, and similar amounts in Idaho and California in August. The time series 

comparisons for the state of Texas indicated that overall, the model-measurement comparison 

demonstrates a very good correlation across all seasons, indicating that the model is able to capture 

the spatio-temporal trends of the in-situ data. 

Similar to 2012, in-situ data for 2013 again showed hotspots over the Western Mountain region 

and California. The model was able to capture hotspots over the Western Mountain region for a 

couple of the months (July and August) but consistently under-predicted in California. Also, the 

in-situ data over the eastern half of the U.S. showed quite low concentrations, 30-40 ppb. The 

model significantly under-predicted these in the spring month of May, and over-predicted in 

September; capturing these trends reasonably well in the other months. The largest wildfire 

impacts happened in June, August and September. The June events caused changes of up to 3 ppb 

in northern Mexico and southeastern Canada, along with 1 ppb in Florida, New Mexico and 

Colorado. Biomass impacts in August indicated changes of ~ 2 ppb in Idaho and northern 
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California. Impacts of 2-3 ppb impact in northeastern California were predicted for September of 

2013. The time series comparisons for Texas show a good correlation in spring (0.81), but excellent 

correlation in summer and fall (0.93 and 0.92 respectively). However, the 2013 model tends to 

over-predict more than 2012. The over-prediction could potentially be due to combined problems 

in emissions and meteorological fields, as indicated in a submitted manuscript by Pan et al. this 

year. 

Similar to 2013, in-situ data for 2014 again showed ozone hotspots over the Western Mountain 

region and in California. While the model was able to capture the hotspots over the Western 

Mountain region, it once again under-predicted in California. Additionally, the eastern U.S. 

showed low concentrations of ozone overall during the ozone season, 30-40 ppb. The model 

reproduced these reasonably well in April, July and October; significantly under-predicting in May 

by 5-10 ppb and over-predicting in June and August by 10-20 ppb. The time series comparison for 

Texas reported the highest over-prediction for the three years. For the month of April 2014, the 

model predicted 1-2 ppb changes in some places such as Georgia, South Carolina, Florida and 

Kansas; a 1-2 ppb impact in southeastern Oregon, northwestern Nevada and southern Idaho during 

July 2014, while in August, up to 3 ppb changes in western California, central Oregon, Idaho, 

southwestern Canada and southern Georgia.  

During the summer ozone seasons of 2012, 2013 and 2014, the model was unable to capture the 

high PM2.5 concentrations across the continental U.S. Large PM2.5 impacts due to fires of up to 10 

μg m-3 in southeastern Canada were predicted for July 2012. Biomass fires in southeastern Canada 

elevated PM2.5 concentrations there by 5-10 μg m-3 during the summer months of June and July 

2013. In October 2013, changes of 5-10 μg m-3 were predicted in eastern Texas, Louisiana, 

Alabama, Georgia, Idaho and southwestern Canada. One interesting case in point is that for June 

2014 the model significantly under-predicted when the biomass impact was minimal, indicating 

that probable error in biomass emissions was not the potential cause for model-measurement error.  

It should be noted that ozone concentrations were 12-hr averaged values; hence concentrations 

were typically low during simulation episodes, even in places such as New York, Houston and Los 

Angeles which are known to be nonattainment regions.  Additionally, the evaluations conducted 

through this study were on a monthly average basis; there were day-to-day events which had much 

larger magnitudes vis-à-vis the monthly averages. This could also explain the typically low 

monthly mean biomass impact numbers for ozone. A comparison of Maximum Daily 8-hr 

Averages (MDA8s) typically done in modeling studies could tell an altogether different story. 

There could be several causes behind the model-measurement discrepancies. Some of these issues 

could be attributed to uncertainties in emissions, chemistry and inaccurate meteorological fields. 

It would be helpful to conduct the model-measurement comparisons for each component of 

speciated PM2.5 to understand what is driving the broadly poor model performance of PM2.5.  This 

study motivates the need for additional analyses on the impact of biomass burning, from Texas as 

well as its neighboring states, on the air quality in Texas cities, and how that could potentially 

impede efforts by the TCEQ and subsequently the EPA to bring Harris County and other 

nonattainment regions in Houston into attainment. With that end in view, it would be helpful to 

conduct a follow-up study exploring the impact of biomass emissions on attainment status in 

Texas. Additionally, it motivates the extension of the simulation episode to include 2011 and 2015, 

both years which experienced massive fire events in the state. 

Introduction  
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Background 

A number of major metropolitan areas in Texas currently monitor above or close to the 2008 

Federal eight-hour ozone National Ambient Air Quality Standards (NAAQS) of 75 parts per billion 

(ppb). On December 17, 2014, the U.S. Environmental Protection Agency (EPA) further proposed 

to reduce the level of the ozone NAAQS to a range of 65-70 ppb putting additional areas in danger 

of being designated as nonattainment (79 Federal Register 242, 17 December 2014, pp. 75234-

75411).  

Extensive research over the past several decades shows that surface ozone and particulate matter 

concentrations can be influenced by emissions from wildfires burning in areas far upwind of areas 

which usually experience elevated surface ozone and particulate matter concentrations (e.g., 

Bertschi and Jaffe, 2005; Fiore et al., 2014; Jaffe et al., 2004; Jiang et al., 2012; Lapina et al., 2006; 

McKeen et al., 2002; Morris et al., 2006; Pfister et al., 2008; Singh et al., 1996; Sinha et al., 2004; 

Val Martin et al., 2006). Wildfire emissions can include ozone and ozone precursors such as oxides 

of nitrogen (NOX) which often travel as peroxyacetyl nitrate (PAN) before converting back into 

NOX; as well as compounds that can be chemically traced to wildfires such as carbon monoxide 

(CO), carbon dioxide, aerosols such as fine particulate matter (PM2.5), carbon species (e.g., organic 

carbon or OC), formaldehyde (HCHO) and many others. Depending on the specific nature of 

compounds emitted from wildfires, these compounds can undergo photochemical reactions and 

can be transported very long distances at high altitudes before descending into the mixing layer 

and impacting surface air quality. 

With this GAD, we develop model input files and perform CMAQ photochemical modeling over 

North America for the ozone seasons (April – October) of  2012-2014 under two scenarios: (a) 

with the wildfire emissions inventory, FINN, turned on and (b) with FINN turned off (this is 

sometimes referred to as a “zero-out” of emissions). We evaluate model results against available 

measurements from the surface monitoring network and, if resources permit, against validated 

remotely sensed retrievals from satellite-deployed instruments such as OMI (Ozone Monitoring 

Instrument), TES (Tropospheric Emissions Spectrometer), MOPITT (Measurement Of Pollution 

In The Troposphere), MODIS (MODerate Resolution Imaging Spectroradiometer) or others (e.g., 

Choi et al., 2005; 2008a, 2008b, 2009, 2010, 2012; Choi, 2014; Choi and Souri, 2015).  

Several emission inventories for wild fires and biomass burning have been developed for use in 

atmospheric chemistry models. Among these is FINN which has global daily fire emissions at 1 

km by 1 km resolution from 2002 to the present, available online at 

https://www2.acd.ucar.edu/modeling/finn-fire-inventory-ncar. The product differs from other 

inventories because it provides a unique combination of high temporal and spatial resolution, 

global coverage, and estimates for a large number of chemical species. These reasons are the 

potential motivation to use the FINN inventory for this study. 

Objectives 

Our main objectives are: 

1) Evaluate the impacts of biomass burning on fine particulate matter, ozone, carbon monoxide 

and other related chemistry products over the continental U.S. during the ozone season for three 

years: 2012, 2013, and 2014. 

https://www2.acd.ucar.edu/modeling/finn-fire-inventory-ncar
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2) Evaluate model-measurement comparisons with biomass burning emissions to quantify the 

impacts of biomass burning on regional air quality. 

Tasks 

The following tasks were completed for this work: 

1) Submission of Scope of Work with budget 

2) Submission of Quarterly Technical Reports 

3) Processing the FINN emissions inventory to make it model-ready. 

4) Comparison of model runs with and without biomass burning. 

5) Documentation of the pre-processing, installation and testing of necessary modeling 

components. 

6) Provide an archive of model input and output files along with associated metadata. 

7) Submission of a Final Report (this document) 
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Observations, Methodology and Model Setup 

Observations 

The study uses observational data of several types and sources. These include NOx and O3 

observations from remote-sensed (satellite and aircraft) and surface observations. Additionally, we 

use remote-sensed plume height observations. Each of these data sources is described in the 

following sections, along with the procedure to extract the data and make it compatible with model 

format. 

Surface Data  

Surface observational data were taken from regular measurements at the Continuous Ambient 

Monitoring Stations (CAMS) operated by the Texas Commission on Environmental Quality 

(TCEQ). The CAMS measurement network collects real-time data for species and meteorological 

variables. Measured parameters differ from station to station, with station density in southeastern 

Texas being relatively high. The location and status of these sites measuring ozone and nitrogen 

oxide are shown in Figure 1. CAMS data are archived by our group from the TCEQ website. 

 

 

Figure 1. MODIS true color image showing the location and status of the CAMS ozone and NOx 

sites. 

Comparison of CAMS data with model predictions is relatively straightforward. The first step is 

to extract model variables at the surface. The CMAQ model outputs binary netCDF files and we 

have developed an in-house code to extract data for any variable at any layer. To compare model 

value with observation from a site, we first use the latitude and longitude of a site to determine its 

cell location in the model grid, then extract the corresponding value from model output. The 

temporal frequency of model output and CAMS are both hourly, making direct comparison easy. 
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Additionally, we used hourly surface O3, CO, and PM2.5 concentrations from the EPA’s AQS 

measurement network (http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html). The 

number of ozone sites differs from month to month, but on average, 1,300 stations are available in 

2012-2014. The network includes 300 CO measurements over the continental U.S. The quality of 

CO measurement is highly variable, and a majority of sites lack continuous hourly measurements. 

We attempted to reduce their uncertainties by removing any observations that included 250 ppbv 

as fill values, and abnormal levels; nevertheless, the comparison of CO measurements with model 

should be interpreted with caution. The AQS network provides abundant hourly PM2.5 values at 

more than 400 sites. Stations measuring the mentioned species are more concentrated in eastern 

and western regions of the U.S. where the population density is higher. AQS data are archived by 

our group using a MATLAB code which reads and decodes the raw format file. 

Remote Sensing Data  

Remote-sensed ozone and NOx data from the Ozone Monitoring Instrument 
NASA OMI tropospheric NO2 (Level 2, V2.1) was also used for this project. Level 2 data has been 

post-processed from Level 1 (calibrated, georeferenced but unprocessed instrument data) into 

derived geophysical variables. Comparison of OMI data to DOMINO (Dutch OMI NO2) indicate 

that the NASA product was more consistent with validation studies. It has a ground footprint 

varying across the instrument swath from 13×24 km2 at nadir to ~40×160 km2 for the edge of the 

orbit due to wide field of view angle and swath width (i.e., panoramic). A detailed description of 

NO2 retrieval algorithms can be found in Bucsela et al. (2013). Acquired spectra sensed by OMI 

detectors are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method in 

a fitting window from 405 nm to 465 nm. Calculated NO2 slant column densities are then corrected 

for instrumental defects. This is named “destriping” due to variability of effects across the orbital 

track. In order to convert NO2 slant column densities to vertical ones, Air Mass Factors (AMFs) 

which are functions of temperature, cloud cover, topography, albedo, and other factors are 

calculated using a pre-computed scattering-weight table from NASA’s TOMRAD forward vector 

radiative transfer model and monthly mean NO2 profiles from the Global Model Initiative (GMI) 

simulation (here GEOS-CHEM in a 2.5o×2.5o grid). The uncertainties of the product vary from 

location to location and under different meteorological conditions. The overall error on the 

tropospheric vertical column density is <30% under clear-sky conditions and typical polluted 

conditions (>1×1015 molecules cm-2) (Bucsela et al., 2013). 

Daily granules of tropospheric OMI NO2
 are available at http://mirador.gsfc.nasa.gov/cgi-

bin/mirador/collectionlist.pl?keyword=omno2.  

Three important steps in preprocessing are: 

1) Masking pixels having low quality 

The common thresholds for performing the mask are: Solar Zenith Angle 0 ≤ SZA ≤ 85⁰, VCD 

(vertical column density) Quality Flags=0, Root Mean Squared Error of Fit < 0.0003, Terrain 

Reflectivity < 30% and Cloud Fraction < 20%. Note that pixels lacking below criteria are filtered 

out 

2) Removing the vertical a priori profile impact from the granules to conduct an “apples-to-

apples” comparison between model predictions and satellite data: A direct comparison of model 

output to OMI NO2 requires that an a priori vertical profile of NO2 in the OMI retrieval algorithm 

https://email.uh.edu/owa/redir.aspx?REF=mBmiDgjY4_g4e1Gw3W8zM0WEmm-Ks7zTqG4uelCj5pWjAjIK4sLTCAFodHRwOi8vYXFzZHIxLmVwYS5nb3YvYXFzd2ViL2Fxc3RtcC9haXJkYXRhL2Rvd25sb2FkX2ZpbGVzLmh0bWw.
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omno2
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omno2
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(here 2.5o×2.5o monthly averaged profiles from GEOS-Chem) be minimized. Although this coarse 

initial guess could bias results, the main problem lies in applying an average semi-polluted profile 

over the large grid cell that encompasses both urban and rural regions, resulting in an 

underestimation of NO2 vertical columns in urban regions and an overestimation in rural regions 

(Russell et al., 2011). Following the approach described in Duncan et al. (2014), we first use the 

variable called “scattering weight” provided for various pressure levels from the surface to the top 

of the atmosphere that is included in OMI NO2 data files. We sum over all model layers the product 

of the scattering weight and model partial column (molecules cm-2) in each model layer (up to the 

tropopause pressure provided in OMI HDF file).  This sum divided by vertical column density of 

the model is called the air mass factor (AMF) of the model (AMFmodel). Subsequently, we divide 

the product of VCD and AMF of satellite data from the HDF data file by AMFmodel to obtain a 

modified form of vertical column density of the satellite through the following equation: 

VCD’satellite = (VCDsatellite×AMFsatellite)/AMFmodel                                                                                                          (1) 

Now we can directly compare VCD’satellite to model output. It is worth mentioning that a bilinear 

interpolation method is used to co-register pixels between the satellite and model. 

3) Gridding granules in high spatial resolution 

As outlined earlier, pixels located far from nadir experience very poor spatial resolution. In order 

to make a smooth and uniform gridding, a recent novel method (Kuhlmann et al., 2014) is 

deployed. Using a parabolic spline method in this new approach, NO2 maps become smoother and 

pixels at the extremities of scan line are more accurately reconstructed. Traditionally, 

oversampling was the main approach to ensure high spatial resolution for regional analysis. Here, 

this approach is used for the first time in the field of inverse modeling without extensive 

oversampling. 

A sample result of the corrected OMI NO2 column is plotted in Figure 2. It is evident that 

adjusted OMI output differs from the unadjusted one. After adjusting OMI tropospheric NO2, 

background NO2 in rural regions decreased. The bottom panel in Figure 2 presents a very 

detailed OMI map for Houston. We believe this figure communicates a crucial message to the air 

quality community: removing the influence of the a priori profile undeniably has considerable 

impacts (both in magnitude and distribution) on OMI tropospheric NO2.   
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Figure 2: Top panel: average OMI tropospheric NO2 in September of 2013. Noisy pixels have 

been screened out but the effect of the a priori profile remains. Bottom panel: average adjusted 

OMI tropospheric NO2 in September of 2013. Noisy pixels have been screened out and the effect 

of the a priori guess is mitigated. 

Plume height rise data to determine injection height 
The plume injection height is the initial altitude at which wildfire smoke begins to be transported 

away by the horizontal winds. The injection height and plume top define a vertical plume 

transportation zone (Raffuse et al., 2012; Grell et al., 2011). Injection height is important for air 

quality modeling since it determines the direction and amount of smoke to be transported.  
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Satellite remote-sensing observations are used to provide relatively accurate values of aerosol top 

height. Two typical main sensors used for this application are the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) on board the CALIPSO satellite (an active sensor), and the 

Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Terra satellite (a 

passive sensor). CALIOP can provide insight into the vertical characteristics of aerosol (i.e., 

magnitude and type) due to utilizing backscattered nadir laser beam in two polarizations at green 

and near-infrared wavelengths. However, the swath width of CALIPSO observations is too narrow 

(~100 m). Therefore, the coincidence of biomass burning and observed plumes occurrence is very 

unlikely. Consequently, we will only use it for gathering a general picture of vertical distribution 

of aerosols near the source rather than do a quantitative comparison in core of fires. On the other 

hand, the MISR swath is nearly a factor of 4×103 wider than that of CALIPSO. Kahn et al. (2008) 

stated that over the 16-day ground-track revisit cycle of both satellites, MISR is nearly 4,000 times 

more likely to observe buoyant plume cores than CALIOP. Thus, MISR is preferable for height 

injection verification in this study. 

The MISR height injection algorithm is based on a stereo-photogrammetric approach involving 

two steps. Firstly, mean wind is derived based on two triplets of images, the 70o and 45o forward 

nadir views, and the 70o and 45o aft and nadir images. Subsequently, to calculate the reflecting 

layer height (here smoke), matching is performed between 26o forward and nadir views, and 

independently between the 26o aft and nadir views. Based on the maximum reflectance contrast, 

an accurate parallax is used for height retrieval. More details of the retrieval can be found in Diner 

et al. (1999). We estimated injection height using the MINX tool. The estimation occurs in several 

steps. Firstly, MODIS fire radiative power (FRP, in unit of MWatt) data are downloaded for the 

region of interest (here U.S.). Next, MISR granules that have observed plume cores are identified 

by defining the threshold of FRP and the level of uncertainty of MODIS. The source and the 

boundaries of each plume, and the wind direction should be selected manually and several 

properties regarding the matching kernel size, minimum and maximum height, the selection of 

camera and other parameters should be defined. The outputs of MINX are plume rise height 

regions with and without wind-correction. Although the wind-corrected values are few compared 

to no-wind case, they give a more realistic representation of smoke height. The MISR-derived 

plume height is based on blue or red bands which have different values. It is still not clear which 

one should be adopted for injection height estimation, since the blue band has only recently been 

included in MINX. However, generally for optically thin smoke over bright surfaces, blue bands 

perform matching more practically, while red bands provide better injection height for thick 

plumes over relatively darker surfaces (e.g., vegetation and water) which are more likely to be seen 

since biomass burning often happens in forested regions. 

Figure 3 plots the MISR imagery plume height rise for a brush fire in Oregon on the 8th of July, 

2012, as calculated by the MINX software. Due to the bright surface landscape, we used the blue 

band and calculated plume top height accordingly. Wind-corrected top height is relatively lower 

than the no-wind case.  
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Figure 3: MISR derived plume height rise for the Oregon fire event on 8th July, 2012. The left 

panel shows the smoke event as detected by the satellite along with the plume boundaries and 

direction of the plume. The central panel shows the spatial distribution of the plume height rise. 

The right panel plots the plume height rise with and without wind corrections.  

Methodologies used for modeling 

Conversion of the FINN inventory to CMAQ format 
The fire inventory from NCAR (FINN) version 1.5 provides global daily emissions of trace gases 

and particle from biomass burnings (Wiedinmyer et al., 2011) (available at 

http://bai.acom.ucar.edu/Data/fire/). The data has high spatial resolution of 1 km owing to the 

MODIS Thermal Anomalies Product used for fire detection. The land cover/land use (LULC) of 

the spotted fire is initially classified by the MODIS Collection 5 Land Cover Type (LCT) product 

for 2005. Vegetation density in each fire pixel is assigned based on the MODIS Vegetation 

Continuous Fields (VCF) product. Emissions are speciated for MOZART-4, SAPRC-99 and 

GEOS-Chem chemical mechanisms for global and regional model applications.  

The steps involved in the conversion were (a) re-gridding the FINN inventory to the model grid 

cell resolution; (b) mapping the speciation lumping of VOC and PM2.5 emissions, since FINN was 

speciated for MOZART while CMAQ needed CB05; and (c) vertical allocation of fire emissions. 

Each of these is described in detail below. 

Re-gridding of biomass burning emissions 
The FINN emissions were re-gridded to the CMAQ domain using the utility provided by the data 

developer. After re-gridding, species fire emissions (in moles km-2 h-1) were classified by fire sizes 

(in m-2) and area fractions of four vegetation types, tropical forest, extra tropical forest, savanna, 

and grassland. For gases, emissions (in moles s-1) required by the SMOKE processing were 

calculated as:  

emissions (moles s-1) = emissions (moles km-2 h-1) × 144 / 3600 (2) 

The number 144 comes from the area of a grid cell of our domain which is of size 12 km × 12 km. 

Aerosols (from µg m-2 s-1 to g s-1) were made in a similar way as:  

 emissions (g s-1) = emissions (µg m-2 s-1) × 144 (3) 

Emissions were assumed to represent the center of the grid cells. 

http://bai.acom.ucar.edu/Data/fire/


19 

 

Mapping from MOZART-4 to CB05 
Table 1 lists the mapping from MOZART-4 to CMAQ cb05tucl_ae6_aq speciation profile 

developed by Tai et al. (2008). 

Since CMAQ v5.0, primary PM2.5 emissions are split into 18 species: organic carbon (OC), 

elemental carbon (EC), sulfate (𝑆𝑂4
−2), nitrate (𝑁𝑂3

−), water (H2O), sodium (Na+), chloride (Cl-), 

ammonium (𝑁𝐻4
+), selected trace elements (Al, Ca2+, Fe, Si, Ti, Mg2+, K+, Mn), non-carbon 

organic matter (NCOM) and un-speciated fine PM (PMOTHR). Primary unspeciated coarse 

particulate matter (PM) is named PMC (Simon, 2015).  

In the FINN inventory, PM2.5 includes OC and EC. PM2.5 particles are a subset of PM10. 

Table 1: Mapping of MOZART-4 to CMAQ cb05tucl_ae6_aq species. 

cb05tucl_ae6_aq MOZART-4 

NO NO 

NO2 NO2 

CO CO 

FORM CH2O 

ALD2 CH3CHO 

ALDX GLYALD 

ETOH C2H5OH 

MEOH CH3OH 

ETHA C2H6 

PAR C3H6 + 1.7*BIGENE 

+ 5.0*BIGALK + 

1.5*C3H8 

+3.0*CH3COCH3 + 

4.0*MEK + 1.0*C2H2 

+ 3.0*HYAC 

ETH C2H4 

OLE C3H6 + BIGENE 

ISOP ISOP 

TERP C10H16 

TOL 0.3*TOLUENE 

XYL 0.1*TOLUENE 

SO2 SO2 

NH3 NH3 

BENZENE 0.6*TOLUENE 
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NR C2H2 + 1.5*C3H8 + 

0.5*TOLUENE + 

0.3*BIGENE 

CH4 CH4 

POC OC 

PEC BC 

PMOTHR PM25 – OC - BC 

PMC PM10 – PM25 

 

Vertical allocation of fire emissions  
The vertical fraction of FINN emissions is calculated on both pressure and smoke smoldering 

effect. The computed vertical layer fraction (LFRAC) for one model grid cell having the largest 

emission is shown in Figure 4. The fraction of emissions on the surface (Lay1F) is small (0.01) 

without considering the smoke smoldering effect. Pouliot et al. (2005) estimated the smoldering 

effect as: 

BEsize = 0.0703 ×ln(acres) + 0.3  (4) 

Sfract = 1 - BEsize    (5) 

Where BEsize is buoyancy efficiency as a function of fire size, acres is fire size in the unit of acres, 

and Sfract the smoldering fraction. In the above example, the new Lay1F is 0.27, which is consistent 

with the values from Tai et al. (2008).  

 

Figure 4: An example of vertical layer fraction (LFRAC) for one model grid cell with non-zero 

FINN emission. 

Processing BEIS to obtain model-ready emissions 
The Biogenic Emission Inventory System (BEIS) version 3.14 from EPA is used to create gridded, 

hourly emissions of VOCs and NOx from vegetation and soils. The BEIS uses meteorological 

inputs including hourly temperature and shortwave downward radiation, which is internally 
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converted to photosynthetically activate radiation (PAR). PAR is the visible light fraction of 

shortwave downward radiation. The BEIS uses vegetation speciation data from the Biogenic 

Emissions Landuse Database version 3 (BELD3), which provides data on 230 land use and 

vegetation classes at 1 km resolution over the continental U.S. The BELD3 are based on combined 

county-level U.S. Department of Agriculture (USDA) agriculture data and U.S. Forest Service 

(USFS) Forest Inventory and Analysis (FIA) vegetation species data. The soil NO algorithm is a 

function of temperature, rainfall, and growing season (Yienger and Levy, 1995). Additional 

descriptions of BEIS algorithms are to be found in Pouliot and Pierce (2009). 

One point in question is the motivation to use BEIS as compared to using the Model of Emissions 

of Gases from Nature (MEGAN). Our group actually did set up the MEGAN model and obtained 

preliminary emissions results using the same. However, previous studies have indicated that 

CMAQ simulations using MEGAN inputs have over-predicted concentrations of several species 

such as isoprene (e.g. Kota et al., 2015; Warneke et al., 2010) which resulted in large over-

prediction of ozone. In order to clearly understand the effect of biomass burning, the base inventory 

needs to be accurate; hence we chose to go with BEIS. 

Plume rise approaches 
This study compared plume rise algorithms from two models. Here the Western Regional Air 

Partnership’s (WRAP) plume model, and the Weather Research and Forecasting Chemistry’s 

(WRF-Chem) online plume model are compared over a simulation episode in September 2013. 

We first used the WRAP model here for our model-measurement analyses because it is already 

employed by other researchers for CMAQ modeling exercise (e.g. Fu et al. 2012). To the best of 

our knowledge, no one has yet applied the WRF-Chem plume rise module for use in smoke 

emissions modeling of CMAQ. 

In this study, plume top and bottom define a vertical zone within which the smoke begins to 

transport away from the source region, which is akin to the approach adopted by Raffuse et al. 

(2012). Smoke heights exhibit significant variability ranging from a few hundred meters to about 

4.5 km above the terrain (Kahn et al., 2008). The terminal height of smoke depends on several 

factors including atmospheric static stability, amount of water vapor, wind speed and heat flux 

released by the fire (Freitas et al., 2007). On average, pyrogenic trace gases and aerosols in an 

unstable air mass can be lifted ~600 m higher than those in stable one (Val Martin et al., 2010). 

The latent heat from condensation of water vapor adds buoyancy to the lofted smoke (Penner et 

al., 1986). Strong horizontal wind speed causes greater entrainment, lowering plume height 

(Freitas et al., 2010) and bending the smoke. The smoke injection height determines smoke 

transport distance and direction. The model simulation indicated that higher smoke injection height 

produced larger downwind ozone enhancement (Leung et al., 2007). Therefore, an accurate plume 

rise model considering those physical processes is necessary to distribute fire emissions vertically 

in chemical transport models (CTMs). 

Given the multiplicity and complexity of the dynamic evolution of BB plumes, a simplified 

approach in CTMs is to distribute fire emissions uniformly within the planetary boundary layer 

(Parrington et al., 2012) or below some altitude (Pfister et al., 2006). An empirical 

parameterization, the WRAP scheme (Tai et al., 2008; WRAP 2005), estimates the plume top and 

bottom as a function of the time of day and fire size. However, both of the two methods cannot 

realistically capture the variations of smoke plume rise. By analyzing stereographic plume heights 

for 2002 and 2004–2007 observed from the Terra Multi-angle Imaging SpectroRadiometer 
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(MISR), Val Martin et al. (2010) found that about 4–12% of fire plumes over North America 

reached the free troposphere. The WRAP scheme releases all nighttime fire emissions into the first 

model layer, which may lead to overestimation of ground level biomass burning emissions impacts 

near the fire source region. The BlueSky algorithm, another empirical plume rise model based on 

the Briggs equations (Briggs, 1975), was implemented into CMAQ. Although suitable for 

controlled fires, this model is not capable of predicting wildfire behaviors (Paugam et al., 2016) 

because it generally underestimates smoke injection heights compared with satellite measurements 

(Raffuse et al., 2012). Thus, in this study, we adopted the 1-D plume rise model developed by 

Freitas et al. (2007), which explicitly treats pyro-convection by solving equations of momentum 

(vertical motion), energy (the first law of thermodynamics), and mass balance (continuity) of water 

vapor iteratively. The model obtains environmental input conditions from the host model and 

returns estimated plume heights. We setup two different plume rise modules -- WRAP and 1-D 

plume rise modules. Below are detailed explanations of two modules. Again, for our biomass 

burning analysis, we implemented two different modules into the CMAQ simulations, evaluated 

both results and finally chose the 1-D plume rise module for this study. 

Plume rise estimation using the WRAP model 
In the WRAP model, fires are categorized into five classes (Table 2) based on burned virtual 

acreage. The virtual acreage is defined in Equation 6 (WRAP, 2005). 

Table 2: Fire size classes.  

 

Class 1 2 3 4 5 

Virtual acres 

(a) 
0–10 10 <a <100 100<a<1000 1000 <a<5000 ≥5000 

 

𝐴𝑐𝑟𝑒𝑎𝑔𝑒𝑣𝑖𝑟𝑡𝑎𝑢𝑙 =  𝐴𝑐𝑟𝑒𝑎𝑔𝑒𝑎𝑐𝑡𝑢𝑎𝑙 ∙ √
𝐹𝑢𝑒𝑙 𝐿𝑜𝑎𝑑𝑖𝑛𝑔

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟
  

(6) 

 

Where 𝐴𝑐𝑟𝑒𝑎𝑔𝑒
𝑎𝑐𝑡𝑢𝑎𝑙

 is the actual fire size in acres and 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 equals 13.8 tons per acre.  

 

Instead of using fuel loadings provided in the WRAP report which are assigned for western land-

use/land-cover (LULC), fuel loadings for North America were converted from Wiedinmyer et al. 

(2011) and listed in Table 3. Using these numbers provided a more accurate representation of fuel 

loading for the inventory. Buoyancy efficiencies and fire related parameters for the WRAP module 

are addressed in Tables 4 and 5. 

Table 3: Fuel loadings (tons/acre) assigned to North America land cover classifications used by 

FINN emission inventory. 

Tropical Forest Extra tropical Forest Savanna Grassland 

113.62 42.46 3.95 3.95 

 

Hourly plume top and bottom are calculated as follows: 

 𝑝𝑡𝑜𝑝ℎ𝑜𝑢𝑟
=  (𝐵𝐸ℎ𝑜𝑢𝑟)2 ∙ (𝐵𝐸𝑠𝑖𝑧𝑒)2 ∙ 𝑝𝑡𝑜𝑝𝑚𝑎𝑥

 

𝑝𝑏𝑜𝑡ℎ𝑜𝑢𝑟
=  (𝐵𝐸ℎ𝑜𝑢𝑟)2 ∙ (𝐵𝐸𝑠𝑖𝑧𝑒)2 ∙ 𝑝𝑏𝑜𝑡𝑚𝑎𝑥    

 

(7) 
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Where 𝐵𝐸ℎ𝑜𝑢𝑟 and 𝐵𝐸𝑠𝑖𝑧𝑒 are buoyancy efficiencies as a function of hour of day and fire size, 

respectively. The values and formulations follow in the tables and equations below, taken from 

WRAP (2005). 

 

Table 4:  Buoyancy efficiencies as a function of hour of day 

Hour 1 2 3 4  5 6 7 8 9 10 11 12 

𝐵𝐸ℎ𝑜𝑢𝑟 0.03 0.03 0.03 0.03  0.03 0.03 0.03 0.03 0.06 0.1 0.2 0.4 

Hour 13 14 15 16  17 18 19 20 21 22 23 24 

𝐵𝐸ℎ𝑜𝑢𝑟 0.7 0.8 0.9 0.95  0.99 0.8 0.7 0.4 0.06 0.03 0.03 0.03 

 

 Table 5: Fire-Related parameters as a function of fire size classes 

Class 1 2 3 4 5 

Virtual acres (a) 0–10 10 <a <100 100<a<1000 1000 <a<5000 ≥5000 

𝐵𝐸𝑠𝑖𝑧𝑒 0.4 0.6 0.75 0.85 0.90 

𝑝𝑡𝑜𝑝𝑚𝑎𝑥
 (m) 160 2400 6400 7200 8000 

𝑝𝑏𝑜𝑡𝑚𝑎𝑥
 (m) 0 900 2200 3000 3000 

 

Plume rise estimation using the 1-D WRF-Chem plume rise model 
As described by Freitas et al. (2007), the water balance can be written as 
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Where 𝑤, 𝑇, 𝑟𝑣, 𝑟𝑐 , 𝑟𝑟𝑎𝑖𝑛, and 𝑟𝑖𝑐𝑒 are the vertical velocity, air temperature, water vapor, and cloud, 

rain and ice mixing ratios, respectively, which are associated with in-cloud air parcels. Freitas et 

al. (2007) report that “[e]ntrainment of environmental air is taken to be proportional to the vertical 

velocity in the cloud, and the entrainment coefficient is based on the traditional formulation 
2𝛼

𝑅𝑝
 where 𝑅𝑝 stands for the radius of the plume and 𝛼 =0.1.” In our Eq. (8) 𝛾 = 0.5; it is a term 

introduced to offset exclusion of non-hydrostatic pressure perturbations (Simpson and Wiggert, 

1969), 𝑔 is acceleration due to gravity and 𝐵 is the buoyancy term related to the temperature 

difference between the in-cloud air parcel and its surrounding environment and includes the 

downward drag of condensate water. In Eqs. (9) and (10), the index 𝑒 indicates the value refers to 

the surrounding environment, while 𝑐𝑝 represents specific heat at constant pressure. 𝐾𝑚 and 𝐾𝑇 
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are the eddy coefficients for the diffusivity of momentum and heat, respectively. They are based 

on the Smagorinsky (1963) scheme and include corrections for the influence of the Brunt-Vaisala 

frequency (Hill, 1974) and Richardson number (Lilly, 1962). 

The lower boundary condition is based on a virtual source of buoyancy placed below the model 

surface (Turner, 1973; Latham, 1994). The buoyancy generated by this source is obtained from the 

convective energy flux 𝐸 and the plume radius: 

𝐹 =
𝑔𝑅

𝑐𝑝𝑝𝑒
𝐸𝑅𝑝

2  (13) 

Where 𝑅 is the ideal gas constant and 𝑝𝑒 is the ambient surface pressure. Once the buoyancy flux 

is determined, it provides the vertical velocity (𝑤0) and the temperature excess (𝑇0 − 𝑇𝑒,0) for the 

air parcels at the surface according to Morton et al. (1956) and Latham (1994). 
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5

6𝛼
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0.9𝛼𝐹

𝑧𝑣
)

1/3

 (14) 

∆𝜌0
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5

6𝛼

𝐹

𝑔

𝑧𝑣
−5/3

(0.9𝛼𝐹)1/3 (15) 

𝑇0 =
𝑇𝑒,0

1−
∆𝜌0

∆𝜌𝑒,0

  (16) 

Figure 5 plots the modeled plume height rise from both approaches. The results indicate that the 

WRAP approach is unable to capture the diurnal variation of the plume rise height. In other words, 

the WRAP modeled plume rise height shows no residual height during the nighttime. It is 

understood that physically, the fire emissions rise a finite, non-zero height during the nighttime. 

The 1-D WRF-Chem plume rise approach captures this physical trend quite well.  

 

 Figure 5: Diurnal variation of domain-average plume rise height using the WARP and 1-D WRF-

Chem plume rise approaches in June 2012. 

Simulation domain, episode and input fields 

The WRF and CMAQ simulation period is selected to be April-Oct in 2012, 2013 and 2014.  
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The meteorological model, WRF  

Domain setup 
The WRF and CMAQ domains have sizes of 470×310 and 459×299 for 12-km domain, 

respectively. The geographic parameters and vertical layers for the domains are listed in Table 6 

and Table 7, respectively. 

 

Figure 6: CMAQ used for the UH Air Quality Forecasting (AQF) System at University of Houston 

(http://spock.geosc.uh.edu). 

Table 6: Projection Parameters and Domain Origin 

First True Latitude (Alpha)   33°N 

Second True Latitude (Beta) 45°N 

Central Longitude (Gamma) -97°W 

Projection Origin (31.55113°N, -98.13650°W) 

12km WRF domain Lower Left Corner [x, y] (m) [-1007980, -1739860] 

Both WRF and CMAQ share the same vertical structure since no layer collapsing has been 

employed in MCIP. The vertical structure is listed in Table 7. 

Table 7: Vertical layer structures of WRF and CMAQ used for the modeling 

Layer AGL(m) 

1 15.85 

2 55.48 

3 101.18 

4 175.06 

5 271.50 

6 401.34 
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7 606.83 

8 943.06 

9 1421.18 

10 1966.39 

11 3200.86 

12 5167.92 

13 7268.67 

14 10062.33 

15 13477.36 

 

Input analysis data 
We have evaluated existing analysis datasets and decided to use NCEP’s (National Centers for 

Environmental Prediction) NARR (North American Regional Reanalysis) as input. The NARR 

data are based on an NCEP Eta 221 regional North American grid (Lambert Conformal) (see: 

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html) at 29 pressure levels. Its horizontal 

resolution is 32-km and the frequency is 3-hourly. An alternative to NARR is the Eta-NAM 

analysis data. However, data frequency is reduced from every three hours to every six hours 

starting in 2013. Our validation tests showed it is not as good as NARR for WRF input, probably 

because of lower temporal resolution. 

Major WRF configurations 
Implemented WRF options are shown in Table 8 below. First guess and boundary conditions will 

be from NCEP NARR analyses. Grid nudging is turned on with the same NARR analysis data. 

Table 8: WRF physics options 

WRF Version V3.6.1 

Microphysics Lin et al. Scheme 

Long-wave Radiation RRTMG 

Short-wave Radiation New Goddard scheme 

Surface Layer Option Monin-Obukhov with CB viscous sublayer scheme 

Land-Surface Option Unified Noah LSM  

Urban Physics None 

Boundary Layer  YSU 

Cumulus Cloud Option Kain-Fritsch 

FDDA Grid and 1-hr observation-nudging  

Grid Nudging  
Data assimilation is an effective method which could enhance accuracy of air quality simulations. 

The effect of improved meteorological input fields using this technique on successful air quality 

simulations has been reported by various previous studies. Grid nudging technique is a simple, but 

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
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efficient, method of data assimilation that can improve atmospheric fields (Bowden et al., 2012). 

Rresearch has demonstrated the benefit of grid nudging to air quality modeling studies (Liu et al., 

2012; Otte, 2008a, 2008b). The grid nudging method adds artificial tendency terms to the 

prognostic equations of variables to correct the original model values toward analysis values in 

initial data. 

Emission processing using SMOKE 
Emission modeling was performed with the Sparse Matrix Operator Kernel Emissions (SMOKE) 

model. The 2011 National Emission Inventory (2011 NEI) generated by the EPA (Souri et al., 

2016; Diao et al., 2016a, 2016b) was used to estimate hourly emission rates from anthropogenic 

sources for the continental U.S. Emissions from natural sources were estimated with BEIS3 

(Biogenic Emission Inventory System version 3; additional details at 

http://www.epa.gov/ttn/chief/conference/ei11/modeling/vukovich.pdf). Mobile emissions were 

processed with MOVES. Various surface NOx emissions were prepared for inverse modeling. 

Again, in this project, we used the latest 2011 NEI emissions “as is”, that is, without adjusting for 

possible emission changes. A brief summary of the emissions data used in this emissions modeling 

platform follows:  

 2011 platform v6.1 represents all platform sectors (area, nonroad, and so on) other than 

onroad mobile sources; 

 For onroad mobile source emissions, the latest 2011 platform v6.2 based on the latest 

Motor Vehicle Emissions Simulator (MOVES) 2014 was used.  

Table 9 lists sectors that we used to represent the year 2011 air pollutant emissions for this emission 

modeling system and notes on data preparation. 

Table 9: Platform sectors for the 2011 NEI platform. 

Platform Sector Abbreviation Description 

EGU non-

peaking units 
Ptegu 

2011 NEI point source EGUs determined to operate as non-

peaking units. Hourly 2011 CEMS are not used since the year 

of modeling is 2012-2014.  

EGU peaking 

units 
 
ptegu_pk 

Same as ptegu sector but limited to EGUs that are determined to 

operate as peaking units. Hourly 2011 CEMS are not used since 

the year of modeling is 2012-2014.  

Point source oil 

and gas 
pt_oilgas 

2011NEIv1 point sources with oil and gas production emissions 

processes. Annual resolution.  

Remaining non- 

EGU point 
Ptnonipm 

All 2011NEIv1 point source records not matched to the ptegu, 

ptegu_pk, and pt_oilgas sectors, except for offshore point 

sources that are in the “othpt” sector. Includes all aircraft 

emissions and some rail yard emissions. Annual resolution.  

Agricultural  
Ag 

NH3 emissions from 2011NEIv1 nonpoint livestock and 

fertilizer application, county and annual resolution.  

Area fugitive 

dust 
Afdust 

PM10 and PM2.5 from fugitive dust sources from the 2011NEIv1 

nonpoint inventory including building construction, road 

construction, and agricultural dust, and road dust. County and 

annual resolution.  

http://www.epa.gov/ttn/chief/conference/ei11/modeling/vukovich.pdf
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Nonpoint oil and 

gas 
np_oilgas 

2011NEIv1 nonpoint sources from oil and gas-related 

processes. County and annual resolution.  

Residential 

Wood 

Combustion 

Rwc 

This is a new sector in 2011NEIv1. NEI nonpoint sources with 

Residential Wood Combustion (RWC) processes. County and 

annual resolution.  

Class 1 & 2 

CMV and 

locomotives 

c1c2rail 

Locomotives and primarily category 1 (C1) and category 2 (C2) 

commercial marine vessel (CMV) emissions sources from the 

2011NEIv1 nonpoint inventory. Midwestern states’ CMV 

emissions, including Class 3 sources, are from a separate year 

2010 emissions inventory. County and annual resolution.  

Commercial 

marine 
c3marine 

Category 3 (C3) CMV emissions projected to 2011 from year 

2002 values. These emissions are not from the 2011NEIv1, but 

rather were developed for the rule called “Control of Emissions 

from New Marine Compression-Ignition Engines at or Above 

30 Liters per Cylinder”, usually described as the Emissions 

Control Area- International Maritime Organization (ECA-IMO) 

study: http://www.epa.gov/otaq/oceanvessels.htm. (EPA-420-

F-10-041, August 2010). U.S. states-only emissions (zero in 

Midwest); see othpt sector for all non-U.S. emissions. Treated 

as point sources to reflect shipping lanes, annual resolution.  

Remaining 

nonpoint 

nonpt 

 

2011NEIv1 nonpoint sources not otherwise removed from 

modeling or included in other platform sectors; county and 

annual resolution.  

Nonroad 

 

nonroad 

 

2011NEIv1 nonroad equipment emissions developed with the 

National Mobile Inventory Model (NMIM) using 

NONROAD2008 version NR08a. NMIM was used for all states 

except California and Texas, which submitted their own 

emissions to the 2011NEIv1. County and monthly resolution.  

Onroad 

RatePerDistance 

Rateperdistan

ce 

EPA ran MOVES2014 for 2011 in emissions factor mode. The 

MOVES lookup tables include on-network (RatePerHour) to 

represent exhaust and most evaporative emissions during 

running, tirewear, and brakewear modes. These data include the 

reference county and reference fuel month assignments that 

EPA used for the MOVES simulation. 

Onroad 

RatePerHour 
Rateperhour 

EPA ran MOVES2014 for 2011 in emissions factor mode. The 

MOVES lookup tables include off-network (RatePerDistance) 

that represents emissions from extended idling and APU 

operation. These data include the reference county and reference 

fuel month assignments that EPA used for the MOVES 

simulation. 

Onroad 

RatePerVehicle 

Ratepervehicl

e 

EPA ran MOVES2014 for 2011 in emissions factor mode. The 

MOVES lookup tables include off-network starts/stops 

(RatePerVehicle) that represents emissions from start exhaust 

and most evaporative emissions that occurs off-network. These 

data include the reference county and reference fuel month 

assignments that EPA used for the MOVES simulation. 

http://www.epa.gov/otaq/oceanvessels.htm


29 

 

 

As a QA/QC check, we provide area sector comparison of the two inventories below. Figure 7 

shows area emissions from 2008 NEI and 2011 NEI over southeast Texas, as well as differences 

in percentage. The reduction is evident – the 2008 NEI large area emission in the DFW area (left 

corner) can hardly be seen in the 2011 NEI (in the middle). Intensity also decreased in the Houston 

area. 

 

Figure 7: Area emissions. Left: 2008 NEI, center: 2011 NEI, and right: difference in percent. 

The chemical transport model, CMAQ 
Major CMAQ configurations are shown in Table 10. All of these options have been tested by the 

UH modeling group. 

Table 10: Major CMAQ options 

Onroad 

RatePerProfile 
Rateperprofile 

EPA ran MOVES2014 for 2011 in emissions factor mode. The 

MOVES lookup tables include off-network (RatePerProfile) 

that represents emissions from evaporative fuel vapor venting. 

These data include the reference county and reference fuel 

month assignments that EPA used for the MOVES simulation. 

Non-US Point Othpt 

Point sources from Canada’s 2006 inventory and Mexico’s 

Phase III 2012 inventory, annual resolution. Mexico’s inventory 

is year 2012 and grown from year 1999 (ERG, 2009; Wolf, 

2009). Also includes all non-U.S. C3 CMV and U.S. offshore 

oil production, which are unchanged from the 2008 NEI point 

source annual emissions.  

Non-US 

nonpoint and 

nonroad 

Other 

Annual year 2006 Canada (province resolution) and year 2012 

(grown from 1999) Mexico Phase III (municipio resolution) 

nonpoint and nonroad mobile inventories.  

Non-US onroad Othon 

Year 2006 Canada (province resolution) and year 2012 (grown 

from 1999) Mexico Phase III (municipio resolution) onroad 

mobile inventories, annual resolution.  

Biogenic Biog No updates made (Stay constant) 
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CMAQ version V5.0.1 

Chemical Mechanism CB05 gas-phase mechanism with active chlorine chemistry, 

updated toluene mechanism, fifth-generation CMAQ aerosol 

mechanism with sea salt, aqueous/cloud chemistry 

Lightning NOx 

emission 

Included by using inline code 

Horizontal advection YAMO  

Vertical advection WRF omega formula  

Horizontal 

mixing/diffusion 

Multiscale (multiscale) 

Vertical 

mixing/diffusion 

Asymmetric Convective Model version 2  

Chemistry solver EBI optimized for the Carbon Bond-05 mechanism  

Aerosol AERO 5 for sea salt and thermodynamics  

Cloud Option ACM cloud processor for AERO5  

IC/BC source Default static profiles 

 

Dynamic chemical boundary conditions 
One of the drawbacks of the standard CMAQ model is the fact that it uses temporally static 

boundary conditions, implying that the concentrations of model species over the model grid cells 

do not exhibit any diurnal variation. This could potentially bias model-measurement comparisons, 

especially at grid cells near the model lateral and upper boundary. In order to mitigate this potential 

source of model-measurement error, we used input boundary conditions simulated by a global 

Chemical Transport Model (CTM). In this space, we ran the GEOS-Chem model (Bey et al., 2001) 

for the years of 2011 to 2014 to generate 3-D gridded species concentrations over a lateral grid 

(2o×2.5o GEOS-Chem spatial resolution regridded for the new CMAQ chemical boundary 

conditions) over the continental U.S. An additional advantage of using GEOS-Chem is that it has 

47 vertical profiles stretching from the surface to about 80 km, which makes it possible to provide 

vertical boundary conditions over a larger height. This could help simulate long-range transport of 

ozone from wildfires and capture stratospheric impact on surface ozone.  

Model evaluation 

Evaluation of model output in terms of chemistry and biomass burning impact 

In this section, we evaluated the performance of CMAQ model output to various observations in 

different regions of U.S. Next, the impact of biomass burning on air quality was investigated. On 

average, there was one big fire in the U.S every month. The regions that our evaluation will be 
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focused on are depicted in Figure 8. We divided our simulation into spring (April-May), summer 

(June-August), and fall (September-October) seasons.  

 

Figure 8: U.S. Census Bureau Regions and Divisions (http://www2.census.gov/geo/pdfs/maps-

data/maps/reference/us_regdiv.pdf). 

As indicated previously, we ran two simulation scenarios: one with biomass burning added in and 

the other without biomass burning emissions. In order to capture the impact of biomass burning 

on air quality, we investigated the difference of model output with biomass burning emissions and 

without considering them. This can be represented as: 

Impact of biomass burning = CMAQ(2011 NEI +biomass) - CMAQ(2011 NEI) 

We will focus on ozone, PM2.5 and CO in this report.  

Evaluation metrics  

To evaluate performance of CMAQ simulations we used the following statistics. All are frequently 

used in the modeling community. Observational EPA AQS data, often referred to as “in situ” data, 

were used to validate model results.  

Correlation (r) between model values and observed values 

𝑟 =
∑ [(𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)]𝑛

𝑡=1

√∑ (𝑥𝑡 − �̅�)2𝑛
𝑡=1 ∗ ∑ (𝑦𝑡 − �̅�)2𝑛

𝑡=1

 
(17) 

 

n = number of data points (i.e., number of monitors), x = observed values, y = model values, values 

with an over bar indicate the mean. 

http://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
http://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
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Index of Agreement (IOA) between model values and observed values 

𝐼𝑂𝐴 = 1 −
∑ 𝑒𝑡

2𝑛
𝑡=1

∑ (|𝑦𝑡 − �̅�| + |𝑥𝑡 − �̅�|)2𝑛
𝑡=1

 
(18) 

 

n = number of data points, et = yt-xt, x = observed values, y = model values, values with an over 

bar indicate the mean. 

Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

 
(19) 

 

n = number of data points, et = yt-xt, x = observed values, y = model values. 

Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑡|

𝑛

𝑡=1

 
(20) 

 

n = number of data points, et = yt-xt, x = observed values, y = model values. 

Mean Bias (MB) 

𝑀𝐵 =
1

𝑛
∑ 𝑒𝑡

𝑛

𝑡=1

 
 (21) 

 

n = number of data points, et = yt-xt, x = observed values, y = model values. 

Model-measurement evaluation 

Ozone model-measurement comparisons and biomass burning impacts for 2012 
The contour maps which contrast CMAQ model results for 12-hr average ozone concentrations 

against in-situ data for the ozone season of 2012 are plotted in Figures 9-15. The model maps 

which report absolute concentrations include the impact of biomass emissions, and the difference 

maps represent the difference between the biomass emissions and non-biomass emissions case, 

unless stated otherwise. 

A comparison for the month of April 2012 is plotted in Figure 9, which includes the impact of 

biomass emissions. Broadly, the model does a good job of capturing the ozone hotspots over the 

western Mountain region. An increase of 0.5-1 ppb is predicted across the eastern U.S. due to 

biomass burning. 

The model-measurement comparison for the month of May, 2012 is plotted in Figure 10. In-situ 

data show several hotspots having ozone concentrations exceeding 70 ppb over the western 

mountain region extending into southern California. Additionally, there are a couple of hotspots 

over Ohio and Pennsylvania in the northeast with ozone concentrations around 60 ppb. The model 

does a good job of capturing these hotspots. The biomass impact plot indicates that a change of  
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~0.5-1 ppb is predicted all across the U.S. except for the western coast states of California, Oregon 

and Washington. Also, a change of 1-2 ppb is predicted across northern Mexico. 

Figure 11 plots the model-measurement comparison for June 2012. There are several 60-70 ppb 

hotspots in the Western Mountain, Midwest, East North Central and Northeastern Regions, which 

the model captures quite well. However, it is unable to capture the hotspots higher than 70 ppb 

which are observed in Central California. A broadly similar story is told by the comparison for 

July 2012 in Figure 12. The impact plots indicate that biomass fires added ~ 1 ppb of ozone in 

northern Mexico in June, and more than 3 ppb in southern Canada, with a 1 ppb impact extending 

over a large region there. 

In the comparison for August 2012 in Figure 13, hotspots are seen in the Western Mountains and 

California, reproduced quite well by the model. The forest fires in Idaho and California added 1-3 

ppb ozone in these areas, with a 1-ppb impact crossing state borders. 

 In the comparison for September 2012 in Figure 14, it is noticed that the measured ozone 

concentrations on average were low (30-40 ppb) across the continental U.S., except for California. 

Surprisingly, the model over-predicts most of the low ozone across the country but under-predicts 

the high ozone in California.  

The October 2012 comparison in Figure 15 indicates low ozone concentrations again across the 

country except for a few places in California and the Western Mountain regions. The model 

captures both spatial trends quite well. 

Time series comparisons for the state of Texas are plotted in Figures 16-18. The plots indicate that 

the comparisons for the state of Texas are very similar in spring and fall, with a bit more over-

prediction in summer. Overall, the model-measurement comparison demonstrates a very good 

correlation across all seasons, indicating that the model is able to capture the spatio-temporal trends 

of the in-situ data. 
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Figure 9: Ozone model-measurement comparison and biomass burning impacts for the month of 

April, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 10: Ozone model-measurement comparison and biomass burning impacts for the month of 

May, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 11: Ozone model-measurement comparison and biomass burning impacts for the month of 

June, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 12: Ozone model-measurement comparison and biomass burning impacts for the month of 

July, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 13: Ozone model-measurement comparison and biomass burning impacts for the month of 

August, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 14: Ozone model-measurement comparison and biomass burning impacts for the month of 

September, 2012. Top panel plots the ozone concentrations with biomass burning emissions 

included. In-situ data are represented by circles in the top panel. The bottom panel plots the 

differences between the biomass case and the non-biomass one.  
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Figure 15: Ozone model-measurement comparison and biomass burning impacts for the month of 

October, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 16: Ozone time series for model-measurement comparison during spring 2012 for the state 

of Texas. 

 

Figure 17: Ozone time series for model-measurement comparison during summer 2012 for the state of 

Texas. 

 

Figure 18: Ozone time series for model-measurement comparison during fall 2012 for the state of 

Texas. 
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PM2.5 model-measurement comparisons and biomass burning impacts for 2012 
The PM2.5 concentrations reported here are daily/episide averages. Figure 19 plots the CMAQ 

output contrasted with in-situ data for the month of April 2012. The in-situ data indicate 

concentrations of 10-12 g m-3 all across the eastern U.S., including southeastern Texas. 

Additionally, there are a couple of places in Georgia, New Mexico and California where the in-

situ PM2.5 concentration is greater than 20g m-3. The model underpredicts in most of these places 

but is broadly able to capture the spatial vaiations across the eastern U.S. However, it is unable to 

capture the extreme events that result in PM2.5 concentrations greater than 20g m-3. Biomass 

burning caused changes of 1 μg m-3 across the southeastern U.S. for this month. 

The model-measurement comparison for the month of May, 2012 is plotted in Figure 20. In-situ 

data indicate several hotspots in Indiana, Arkansas, Texas, Louisiana and California, with 

concentrations ranging from 14-20 g m-3
. The model predictions in these regions range from 10-

12 g m-3
, indicating a significant underprediction. Biomass burning caused a 1 μg m-3 change 

across the southeast, and also in certain parts of northern Mexico and Idaho. 

Similar trends are seen in the model-measurement comparison for the months of June, July and 

August  2012 as plotted in Figures 21, 22 and 23 respectively; although it must be noted that the 

in-situ concentrations over the eastern U.S. for July are 4-6 g m-3 higher than the other months. 

Figures 24 and 25 plot comparisons for the fall months of September and October. In addition to 

elevated concentrations over the eastern U.S., the in-situ data also report high concentrations over 

the states of Idaho and Washington, possibly attributed to forest fires. Although the model is unable 

to capture the magnitudes (resulting in underprediction), it is still able to reproduce the spatial 

trends. Biomass emissions changed PM2.5 concentrations by 1 μg m-3 across a significant portion 

of the southern U.S. in June; while those in July changed PM2.5 concentrations by ~ 1 μg m-3 across 

the eastern half of the U.S., with larger impacts of 5-10 μg m-3 predicted in southeastern Canada. 

The August impact indicated a 1 μg m-3 change across the western half of the U.S., with larger 

impacts up to 10 μg m-3 predicted at the border of Idaho and Wyoming. Similar results are 

predicted for September 2012. The October predictions show changes of 1 μg m-3 across most of 

the eastern half of the U.S. and in Idaho and Wyoming, with larger impacts of ~ 4 μg m-3 in 

Louisiana and Mississipi. 

The time series comparison for the state of Texas in spring, summer and fall is plotted in Figures 

26, 27 and 28 respectively. Each of the figures shows a relatively poorer correlation, with fall being 

the best at 0.48 (note: the performance of PM2.5 in the chemical transport model is generally worse 

than that of ozone). The significant underprediction for spring and summer is evident in the 

negative mean biases. 
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Figure 19: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

April, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 20: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

May, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 21: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

June, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 22: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

July, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 23: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

August, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 24: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

September, 2012. Top panel plots the ozone concentrations with biomass burning emissions 

included. In-situ data are represented by circles in the top panel. The bottom panel plots the 

differences between the biomass case and the non-biomass one.  
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Figure 25: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

October, 2012. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 26: PM2.5 time series for model-measurement comparison during spring 2012 for the state 

of Texas. 

 

Figure 27: PM2.5 time series for model-measurement comparison during summer 2012 for the state 

of Texas. 

 

Figure 28: PM2.5 time series for model-measurement comparison during fall 2012 for the state of 

Texas. 
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CO biomass burning impacts for 2012 
This section describes the biomass burning impacts for CO, which is known to be a tracer for 

biomass burning. We highlight only the impacts, not the model-measurement contrasts because of 

the significant uncertainty in CO measurements across the AQS network. A CO impact of less 

than 5 ppb is predicted across most of the eastern U.S. across all seasons. Additionally, there are a 

couple of specific hotspots. For example in April (Figure 29), hotspots with point impacts of 10-

20 ppb are predicted in Louisiana, Georgia, Florida, South Carolina and West Virginia. The 

impacts for May 2012 are plotted in Figure 30, which shows a 5-10 ppb enhancement is predicted 

in Idaho, and a 10-20 ppb change in northern Mexico. Figure 31 plots the changes for June, which 

shows couple of point fires in Louisiana, Georgia, Florida and New Mexico with 10-15 ppb 

increases. The predicted changes for July 2012 (Figure 32) indicate a significant impact of 25-30 

ppb in southern Canada. In August 2012 (Figure 33), large fires in California, Idaho and Wyoming 

added 30 ppb CO into the region. The fire impacts in Idaho and Wyoming continued in September 

(Figure 34), but the impacts of the California fires seem to be a bit mitigated. However, there were 

fire events in the southern states of Arkansas, Louisiana, Alabama, Georgia and South Carolina, 

which added 10-20 ppb CO and intensified in regional impact in October as indicated in Figure 

35. 

 

Figure 29: Effect of biomass burning on CO concentrations in April, 2012. 
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Figure 30: Effect of biomass burning on CO concentrations in May, 2012.

 

Figure 31: Effect of biomass burning on CO concentrations in June, 2012. 
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Figure 32: Effect of biomass burning on CO concentrations in July, 2012. 

 

Figure 33: Effect of biomass burning on CO concentrations in August, 2012. 
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Figure 34: Effect of biomass burning on CO concentrations in September, 2012. 

 

 Figure 35: Effect of biomass burning on CO concentrations in October, 2012. 

 

Ozone model-measurement comparisons and biomass burning impacts for 2013 
The model-measurement comparisons and impacts of biomass burning for the ozone season in 

2013 are plotted in Figures 36-42. In the comparison for April in Figure 36, in-situ data indicate 

there are hotspots in the Western Mountain region crossing 60 ppb, which the model is unable to 

capture. The biomass impact map in the bottom panel of the figure indicates an impact of less than 

1 ppb across the eastern U.S. and some parts of California. Additionally, there is ~1 ppb impact at 

the border of Georgia and Florida. 

The evaluation for the month of May, 2013 is indicated in Figure 37. The model is unable to 

capture the 60-70 ppb hotspots in the Western Mountain region and California. Interestingly, the 
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ozone concentrations over the eastern U.S. are quite low, around 35-40 ppb; and the model usually 

under-predicts these by 5-10 ppb. The biomass impacts contour plot in the bottom panel reveals 

that biomass burning had an impact of less than 1 ppb across the entire continental U.S., with a 1 

ppb change at the border of Georgia and Florida, and over northern Mexico. 

The comparison for June 2013 is plotted in Figure 38. The model is unable to capture the hotspots 

over the Western Mountain region and California, but does a reasonably good job of capturing the 

lower concentrations of 30-40 ppb over the eastern U.S. The biomass impact contour map in the 

bottom panel indicates wildfire impacts of 1-3 ppb in northern Mexico and southeastern Canada, 

with 1 ppb impacts being predicted in Florida, New Mexico and Colorado. 

Figure 39 plots the modeling for the month of July, 2013. The model performs reasonably well in 

capturing the hotspots in the Western Mountain Region but still under-predicts in California. It 

reasonably captures the low ozone concentrations over the eastern U.S. The biomass impacts in 

the bottom panel indicate 1-3 ppb impacts in southeastern Canada, with 1 ppb impacts seen in 

Oklahoma and Kansas. 

The comparisons and impacts for the month of August are plotted in Figure 40. The model captures 

the high ozone on the Western Mountain area and the lower concentrations in the eastern U.S. 

reasonably well, but under-predicts in California. The biomass impacts in the bottom panel indicate 

changes of ~ 2 ppb in Idaho and northern California, with 1 ppb impacts predicted for Louisiana, 

Arkansas and Georgia. 

Figure 41 plots the comparisons and impacts for the month of September, 2013. Ozone 

concentrations across the continental U.S. are typically low except for some hotspots in the 

Western Mountain region and California. The model under-predicts these hotspots but over-

predicts the low concentrations over the eastern U.S. The biomass impacts plot indicates an impact 

of ~ 0.5 ppb across the continental U.S., with an impact of ~ 1ppb in Alabama, Arkansas, 

Louisiana, and eastern Texas. Additionally, there is a 2-3 ppb impact in northeastern California. 

Figure 42 plots the model evaluation and impact for October 2013. Ozone concentrations were 

typically low during this month, with the exceptions being a couple of places in California and the 

Western Mountain region. The model was capable of capturing the low concentrations over the 

eastern U.S. but under-predicted the hotspots in the Western Mountain region and California. The 

biomass impact plot shows that forest fires raised ozone over the continental U.S. by less than 1 

ppb, while a 1 ppb impact was predicted over Alabama, Georgia, Idaho, Wyoming and southern 

Canada. 

Figures 43-45 plot the time-series of the model-measurement comparisons for the state of Texas 

for the spring, summer and fall respectively. The comparisons show a good correlation in spring 

(0.81), but excellent correlation in summer and fall (0.93 and 0.92 respectively). These numbers 

indicate that the model performs quite well in reproducing the spatio-temporal trends of the in-situ 

data. However, the model tends to over-predict more than what it did in 2012. 
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Figure 36: Ozone model-measurement comparison and biomass burning impacts for the month of 

April, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 37: Ozone model-measurement comparison and biomass burning impacts for the month of 

May, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 38: Ozone model-measurement comparison and biomass burning impacts for the month of 

June, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 39: Ozone model-measurement comparison and biomass burning impacts for the month of 

July, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 40: Ozone model-measurement comparison and biomass burning impacts for the month of 

August, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 41: Ozone model-measurement comparison and biomass burning impacts for the month of 

September, 2013. Top panel plots the ozone concentrations with biomass burning emissions 

included. In-situ data are represented by circles in the top panel. The bottom panel plots the 

differences between the biomass case and the non-biomass one.  
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Figure 42: Ozone model-measurement comparison and biomass burning impacts for the month of 

October, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 43: Ozone time series for model-measurement comparison during spring 2013 for the state 

of Texas. 

 

Figure 44: Ozone time series for model-measurement comparison during summer 2013 for the 

state of Texas. 

Figure 45: Ozone time series for model-measurement comparison during fall 2013 for the state 

of Texas. 
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PM2.5 model-measurement comparisons and biomass burning impacts for 2013 
The model-measurement comparisons and impacts of biomass burning emissions over the 

continental U.S. is plotted in Figure 46-52. Broadly, the in-situ data show concentrations of 8-10 

g m-3 over the eastern U.S. which the model does a reasonably good job at capturing. However, 

it still under-predicts in Texas and at several places in California, and also in Washington as we 

move towards the fall months. However, the biomass impacts show different spatial trends. The 

plot in the bottom panel of Figure 46 indicates that the fires roughly caused a change of 1g m-3 

in Georgia, Alabama, eastern Texas and southern Oklahoma in April 2013. A similar story is 

revealed for May 2013 in Figure 47. However, the biomass fires cause a change of 1 g m-3 in 

Georgia, South Carolina, Alabama, Louisiana and almost entire Florida, in addition to northern 

Mexico, western Idaho and eastern Washington. Figure 48 and 49 indicate that in June and July 

2013, biomass fires in southeastern Canada elevated PM2.5 concentrations there by 5-10g m-3. In 

Figure 50, biomass burning impacts of around 1g m-3 are seen over Georgia, Alabama and 

Louisiana, some places in the Mid-West, as well as Idaho, Wyoming and California. In September 

2013 (Figure 51), biomass impacts of 1 g m-3 are predicted over a significant part of the eastern 

U.S., along with California, Idaho, Wyoming and southwestern Canada. In Figure 52 for October 

2013, elevated PM2.5 in-situ concentrations are seen over the eastern U.S., which the model is 

unable to reproduce. Similarly, it is unable to capture the west coast hotspots. The bottom panel 

plot indicates that biomass fires in October changed PM2.5 by 1g m-3 in most of the eastern U.S. 

and the Mid-West, Idaho, Wyoming, Washington, California and Oregon. In addition, changes of 

5-10 g m-3 were also predicted in eastern Texas, Louisiana, Alabama, Georgia, Idaho and 

southwestern Canada. 

The time-series for the state of Texas are plotted in Figures 53-54 for the spring and fall seasons, 

respectively. The summer correlation was relatively poorer so we chose to not include it in this 

report. A significant under-prediction is seen for spring, which narrows down in the fall. However, 

the model exhibits poor correlation in both seasons. 
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Figure 46: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

April, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.   
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Figure 47: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

May, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 48: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

June, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.   
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Figure 49: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

July, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.   
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Figure 50: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

August, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 51: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

September, 2013. Top panel plots the ozone concentrations with biomass burning emissions 

included. In-situ data are represented by circles in the top panel. The bottom panel plots the 

differences between the biomass case and the non-biomass one. 
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Figure 52: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

October, 2013. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 53: PM2.5 time series for model-measurement comparison during summer 2013 for the state 

of Texas. 

 

Figure 54: PM2.5 time series for model-measurement comparison during fall 2013 for the state of 

Texas. 

CO biomass burning impacts for 2013 
The CO impacts of biomass burning for the months of April-October 2013 are plotted in Figures 

55-61. An impact of around 5 ppb is predicted along a large part of the eastern U.S. in April, as 

indicated in Figure 55. Some regions along the Midwest also experience similar impacts. The 

predictions for May 2013 in Figure 56 indicate a 5 ppb impact across the east and Midwest, as 

well as northern Mexico, Idaho, Washington and Wyoming. For the month of June in Figure 57, 

an increase of 5 ppb is predicted across the entire eastern half of the U.S., along with some parts 

of California and Mexico. Also, fire hotspots of 15-30 ppb are predicted across southeastern 

Canada. For July 2013 (Figure 58), a 5 ppb increase is predicted across the east and Midwest, 

along with hotspots of 15-30 ppb in southeastern Canada. An impact of 5 ppb is predicted across 

almost the entire continental U.S. for August and September in Figures 59 and 60 respectively. In 

August, there were small fire events in east Texas, Louisiana, Arkansas, Alabama and Mississippi, 

adding ~ 10 ppb of CO. Additionally, there were larger events in northern California and Idaho 

adding up to 25 ppb into these regions. In September 2013, forest fires in Texas, Louisiana, 

Arkansas, Alabama and Mississippi and Georgia resulted in a 10 ppb difference. Biomass fires in 

October 2013 added 15-25 ppb of CO on Georgia, Alabama, northern Idaho and southeastern 
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Canada, and 15 ppb in northern California, Mississippi, Louisiana, eastern Texas and southern 

Arkansas. 

 

Figure 55: Effect of biomass burning on CO concentrations in April, 2013. 

 

Figure 56: Effect of biomass burning on CO concentrations in May, 2013. 
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Figure 57: Effect of biomass burning on CO concentrations in June, 2013. 

 

Figure 58: Effect of biomass burning on CO concentrations in July, 2013. 
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Figure 59: Effect of biomass burning on CO concentrations in August, 2013. 

 

Figure 60: Effect of biomass burning on CO concentrations in September, 2013. 
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Figure 61: Effect of biomass burning on CO concentrations in October, 2013. 

Ozone model-measurement comparisons and biomass burning impacts for 2014 
Contour maps highlighting the comparisons and impacts due to biomass burning for the year 2014 

are potted in Figures 62-68. Figure 62 plots the results for the month of April. The top panel 

indicates that there are several hotspots of ozone concentrations 60-70 ppb over the Western 

Mountain Region and in California, which are under-predicted by the model. In-situ concentrations 

over the eastern U.S. are quite low, ranging between 35-40 ppb and captured quite well by the 

model. The ozone impacts slide in the bottom panel shows that in April, biomass events caused 

less than 0.5 ppb of ozone change across most of the continental U.S. However, there were 1-2 

ppb changes in some places such as Georgia, South Carolina, Florida and Kansas. 

Comparisons and impacts for May 2014 are plotted in Figure 63, indicating in-situ hotspots of 60-

70 ppb over the Western Mountain region and over California. While the model can reasonably 

capture the trends over the Western Mountain region, it still under-predicts in California. In-situ 

concentrations of ozone over the east coast range between 40-50 ppb; the model under-predicts 

these by 5-10 ppb. The impacts indicate less than a 0.5 ppb impact over most regions of the 

continental U.S., although there were 1 ppb effects in Georgia, Florida, Alabama, North and South 

Carolina, northern Mexico and southwestern Canada. 

Figure 64 plots the impacts and comparison for June 2014. The in-situ data indicate hotspots over 

the Western Mountain region and California. The model is able to reasonably capture the Western 

Mountain hotspots but under-predicts in California. Lower ozone in-situ concentrations, ranging 

from 30-40 ppb are observed over the eastern U.S. The model over-predicts here quite 

significantly, by 10-20 ppb. The ozone impact plot in the bottom panel indicates changes of less 

than 0.5 ppb across the entire continental U.S. 

Figure 65 depicts the results for July, 2014. In-situ concentrations were surprisingly low during 

this month except for California. The model reproduced the low concentrations reasonably well 

but under-predicted in California. The impacts of biomass burning were less than 0.5 ppb over the 

continental U.S. although there was a 1-2 ppb impact in southeastern Oregon, northwestern 

Nevada and southern Idaho. 
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Figure 66 plots the model-measurement contrasts and biomass impacts for the month of August in 

2014. In-situ data show hotspots of 60-70 ppb in the Western Mountain region and in California. 

The model reasonably reproduced the Western Mountain hotspots but under-predicted in 

California. Ozone concentrations over the eastern U.S. were quite low during this month, ranging 

from 30-35 ppb. The model significantly over-predicted these numbers by 10-20 ppb. The impacts 

plot in the bottom panel reveals a less than 0.5 ppb increase across the continental U.S., with 1-3 

ppb changes occurring in western California, central Oregon, Idaho, southwestern Canada and 

southern Georgia. 

Figure 67 plots the model-measurement comparisons and biomass burning impacts for September, 

2014. Ozone concentrations for this month were typically low across the continental U.S., except 

for a few hotspots in California. The model over-predicted most of these but under-predicted in 

California. The impact plot in the bottom panel indicates that biomass burning caused changes of 

less than half a ppb over the continental U.S. 

In-situ data for October 2014 (Figure 68) showed low ozone concentrations all across the U.S. 

While these were over-predicted by the model over the western half, the model was actually able 

to capture the trends over the eastern U.S. reasonably well. An impact of less than 0.5 ppb due to 

biomass emissions was predicted over almost the entire continental U.S., although there were 1 

ppb changes over Georgia, Alabama and Mississippi. 

The time-series comparison for 2014 is plotted in Figures 69, 70 and 71 for the spring, summer 

and fall, respectively. The best correlation is predicted for summer (0.93), but the model-

measurement error is quite high, indicating an over-prediction issue. The lowest model error is 

reported for spring. 
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Figure 62: Ozone model-measurement comparison and biomass burning impacts for the month of 

April, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 63: Ozone model-measurement comparison and biomass burning impacts for the month of 

May, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 64: Ozone model-measurement comparison and biomass burning impacts for the month of 

June, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one.  
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Figure 65: Ozone model-measurement comparison and biomass burning impacts for the month of 

July, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 66: Ozone model-measurement comparison and biomass burning impacts for the month of 

August, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 67: Ozone model-measurement comparison and biomass burning impacts for the month of 

September, 2014. Top panel plots the ozone concentrations with biomass burning emissions 

included. In-situ data are represented by circles in the top panel. The bottom panel plots the 

differences between the biomass case and the non-biomass one. 
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Figure 68: Ozone model-measurement comparison and biomass burning impacts for the month of 

October, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 69: Ozone time series for model-measurement comparison during spring 2014 for the state 

of Texas 

.  

Figure 70: Ozone time series for model-measurement comparison during summer 2014 for the 

state of Texas. 

 

Figure 71: Ozone time series for model-measurement comparison during fall 2014 for the state of 

Texas. 
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PM2.5 model-measurement comparisons and biomass impacts for 2014 

 

 

Figure 72: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

April, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 

PM2.5 model-measurement comparisons for the month of April, 2014 are plotted in Figure 72. 

Elevated concentrations of ~ 10-20 g m-3 are observed in the in-situ measurements over the 

eastern U.S. and over some stations in California. The model does a good job of reproducing 

concentration values less than or equal to 12 g m-3 but is unable to capture higher ones. The 

impacts of biomass burning on PM2.5 concentrations is plotted in the bottom panel, where we find 

that biomass burning emissions cause a change of ~ 1 across the eastern U.S., with higher impacts 

of 5-6 g m-3 predicted over the Midwest. Plots for the month of May, 2014 tell a similar story; 
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the impacts plot predicts a 1 g m-3 enhancement over the southeastern U.S., certain parts of the 

Midwest, southern Canada and northern Mexico.

 

 

Figure 73: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

May, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 74: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

June, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 

Comparisons and impacts for the month of June, 2014 are plotted in Figure 74. In-situ data show 

elevated concentrations over the eastern U.S. and west coast which the model is clearly unable to 

reproduce, under-predicting everywhere. The impacts slide in the bottom panel indicates that there 

was hardly any PM2.5 impact due to biomass burning in June 2014, with a 1 g m-3 change 

predicted in some parts of Georgia, South Carolina, Florida and Mexico. A similar story is told by 

the July 2014 comparison and impacts plot in Figure 75. For this month, impacts of 1 g m-3 were 

predicted in Louisiana, northern Nevada, southern Idaho, northern Washington and southwestern 

Canada. 
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Figure 75: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

July, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 76: PM2.5 model-measurement comparison and biomass impacts for the month of August, 

2014. Top panel plots the ozone concentrations with biomass burning emissions included. In-situ 

data are represented by circles in the top panel. The bottom panel plots the differences between the 

biomass case and the non-biomass one. 

Comparisons and impacts for the month of August, 2014 are plotted in Figure 76. Hotspots are 

observed for the in-situ data all over the Pacific coast, and the model under-predicts at all of these 

places. There are several hotspot regions over the eastern U.S., but the model only captures those 

in Indiana and Illinois, under-predicting elsewhere. The impacts map predicts a 1 g m-3 change 

over the southern states of Georgia, North and South Carolina, Alabama, Mississippi, Louisiana, 

northern Texas, Oklahoma, Missouri, Arkansas and Tennessee; and also over northern California, 

Washington, Oregon, Idaho, Wyoming and Nevada. The model evaluation plots for September 

and October 2014 conveys a similar message in Figure 77 and 78 respectively. Here, an impact of 

1 g m-3 is predicted over almost the entire continental U.S. However, the PM2.5 concentrations in 

October were significantly lower over the eastern U.S. as compared to September. 
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The time series for the fall season of 2014 for the state of Texas is plotted in Figure 79. The 

correlation and mean bias are reasonable (R=0.65 and MB=0.86 g m-3); statistics for the other 

regions were quite poor, hence not reported here. 

 

 

Figure 77: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

September, 2014. Top panel plots the ozone concentrations with biomass burning emissions 

included. In-situ data are represented by circles in the top panel. The bottom panel plots the 

differences between the biomass case and the non-biomass one. 
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Figure 78: PM2.5 model-measurement comparison and biomass burning impacts for the month of 

October, 2014. Top panel plots the ozone concentrations with biomass burning emissions included. 

In-situ data are represented by circles in the top panel. The bottom panel plots the differences 

between the biomass case and the non-biomass one. 
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Figure 79: PM2.5 time series for model-measurement comparison during fall 2014 for the state of 

Texas. 

CO biomass burning impacts for 2014 
The CO enhancements over the continental U.S. due to biomass burning during the summer ozone 

season of 2014 are plotted in Figures 80-86. In Figure 80, the model predicts that biomass burning 

emissions will add 15-30 ppb of CO in the Midwest, Georgia, South Carolina and Florida, in 

addition to a uniform 5 ppb enhancement across the eastern half of the U.S. The plot for May 2014 

in Figure 81 indicates that a uniform 5 ppb is added across the eastern U.S., in addition to some 

parts of Mexico and Canada. Also, a 15 ppb change is noticed in south-central Canada. The plot 

for June 2014 in Figure 82 indicates that only the southeastern U.S. and northern Mexico 

experience a 5 ppb enhancement due to biomass emissions. The plot for July 2014 in Figure 83 

indicates that in addition to the southeastern U.S., an enhancement of 5 ppb is also predicted for 

most of the western U.S. The plot for August in Figure 84 shows that a 5 ppb change is predicted 

across almost the entire continental U.S., in addition to changes up to 30 ppb in northwestern 

Washington. The plot for September in Figure 85 indicates that a 5 ppb increase is predicted across 

the entire continental U.S. except for some parts of Texas, Utah, Colorado and the entireties of 

New Mexico and Arizona. The plot for October 2014 in Figure 86 shows that a 5 ppb increase is 

predicted over almost the entire eastern U.S. and Pacific coast as well as southwestern Canada. 

Additionally, increases of 15-20 ppb are predicted for eastern Texas, Arkansas, Louisiana, 

Mississippi, Alabama, Georgia and Florida.  
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Figure 80: Effect of biomass burning on CO concentrations in April, 2014. 

 

Figure 81: Effect of biomass burning on CO concentrations in May, 2014. 
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Figure 82: Effect of biomass burning on CO concentrations in June, 2014. 

 

Figure 83: Effect of biomass burning on CO concentrations in July, 2014. 
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Figure 84: Effect of biomass burning on CO concentrations in August, 2014. 

 

Figure 85: Effect of biomass burning on CO concentrations in September, 2014. 
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Figure 86: Effect of biomass burning on CO concentrations in October, 2014. 

Summary and Conclusions 

The NCAR’s FINN biomass burning inventory (Wiedinmyer et al., 2011) was used in conjunction 

with the CMAQ chemical transport model and the WRF meteorological model to assess the impact 

of biomass burning emissions on ozone, particulate matter and carbon monoxide concentrations 

over the continental U.S. The simulation episodes chosen were the summer ozone seasons of three 

years: 2012, 2013 and 2014. In this space, other anthropogenic emissions fields were provided by 

the SMOKE model. Biogenic emissions were modeled using BEIS. We chose BEIS over MEGAN 

since previous studies (e.g., Kota et al., 2015; Warneke et al., 2010) indicated that CMAQ 

modeling using MEGAN over-predicted concentrations of several biogenic VOCs such as 

isoprene. The FINN VOC emissions were speciated for the MOZART mechanism; these had to be 

re-mapped to CB05, which is the mechanism used for our CMAQ model. Additionally, the 

resolution of the FINN inventory was 1-km, which had to be re-gridded to 12 km. We also re-

distributed the emissions vertically. Observational data were taken from TCEQ’s CAMS and 

EPA’s AQS networks. This study has marked improvements over the previous biomass burning 

evaluations, which are as follows: 

a) A previous study (TCEQ-AQRP Project 14-011) which built the FINN inventory produced 

air quality model runs for a 45-day simulation episode (May 16-June 30, 2012). This study 

extended that by doing a model evaluation for the summer ozone seasons of three years. 

b) The regional CTMs such as CMAQ model hitherto used static chemical boundary 

conditions – i.e. these showed no diurnal variation. We generated updated chemical 

boundary conditions using the global GEOS-Chem model, which were more physically 

relevant since they showed certain diurnal trends. Since the vertical diurnal profile of the 

GEOS-Chem output extends up to 80 km, it could be also used to improve the ozone 

vertical profile derived from stratospheric transport of ozone. 
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c) Previous studies in our group (Li et al., 2016; Jeon et al., 2015) indicated that improving 

modeled meteorological fields using methods such as grid nudging and objective analysis 

could help improve air quality modeling for ozone and PM2.5. Following that, we used grid 

nudging for our current 3-year simulation run. 

d) Previous biomass burning studies using the CMAQ modeling used a parameterized version 

of plume height rise developed by WRAP. We noticed this parameterized version did not 

exhibit physically relevant trends; for example there was no residual height at night. Hence 

we used the WRF-Chem plume rise module which showed better trends for nighttime 

plume height rise. 

Model-measurement comparisons and biomass burning impacts of ozone 

For evaluation and analysis, we divided our simulation to spring (April-May), summer (June-

August), and fall (September-October) seasons. During 2012, broadly, in-situ data showed ozone 

hotspots of 60-70 ppb across the Western Mountain region and in California, which the model did 

a good job reproducing.  In-situ data for May 2012, showed  that in addition to the Western 

Mountain region and California, there were a couple of hotspots over Ohio and Pennsylvania in 

the northeast with ozone concentrations around 60 ppb. The model did a good job of capturing 

these hotspots. Biomass burning emissions caused a change of 1-2 ppb predicted across northern 

Mexico for this month. 

Observations for June and July 2012 indicated several 60-70 ppb hotspots in the Western 

Mountain, Midwest, East North Central and Northeastern Regions, which the model captures quite 

well. However, it is unable to capture the hotspots higher than 70 ppb which are observed in 

Central California. Biomass fires during this period added ~ 1 ppb of ozone in northern Mexico in 

June, and more than 3 ppb in southern Canada, with a 1 ppb impact extending over a large region 

there. The August forest fires in Idaho and California added 1-3 ppb ozone in these areas, with a 

1-ppb impact crossing state borders. In-situ ozone concentrations in September on average were 

low (30-40 ppb) across the continental U.S., except for California. Surprisingly, the model over-

predicted most of the low ozone across the country but under-predicts the high ozone in California. 

The reasons behind the under-prediction in California are still unknown and being investigated.  

Time series comparisons for the state of Texas indicated that overall, the model-measurement 

comparison demonstrates a very good correlation across all seasons, indicating that the model is 

able to capture the spatio-temporal trends of the in-situ data. 

Similar to 2012, in-situ data for 2013 again showed hotspots over the Western Mountain region 

and California. The model was able to capture the hotspots over the Western Mountain region for 

a couple of the months (July and August) but consistently under-predicted in California. Also, in-

situ data over the eastern half of the U.S. showed quite low concentrations, 30-40 ppb. The model 

significantly under-predicted these in the spring month of May, and over-predicted in September; 

capturing these trends reasonably well in the other months. Biomass burning emissions caused a 1 

ppb change at the border of Georgia and Florida in April and May. Additionally, a 1 ppb change 

was predicted over northern Mexico in May.  

Wildfire impacts in June caused changes of 1-3 ppb in northern Mexico and southeastern Canada, 

along with 1 ppb in Florida, New Mexico and Colorado. Biomass impacts in August indicated 

changes of ~ 2 ppb in Idaho and northern California, with 1 ppb impacts predicted for Louisiana, 
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Arkansas and Georgia. Impacts of ~ 1 ppb in Alabama, Arkansas, Louisiana, and eastern Texas, 

and 2-3 ppb impact in northeastern California were predicted for September of 2013. In October, 

a 1 ppb change was predicted over Alabama, Georgia, Idaho, Wyoming and southern Canada. The 

time series comparisons for Texas show a good correlation in spring (0.81), but excellent 

correlation in summer and fall (0.93 and 0.92 respectively). However, the model tends to over-

predict more than 2012. Over-prediction could potentially be due to combined problems in 

emissions and meteorological fields, as indicated in a submitted manuscript by Pan et al. this year. 

Similar to 2013, in-situ data for 2014 again showed ozone hotspots over the Western Mountain 

region and in California. While the model was able to capture the hotspots over the Western 

Mountain region, it once again under-predicted in California. Additionally, the eastern U.S. 

showed low concentrations of ozone overall during the ozone season, 30-40 ppb. The model 

reproduced these reasonably well in April, July and October; significantly under-predicting these 

in May by 5-10 ppb and over-predicting in June and August by 10-20 ppb. The reason behind these 

discrepancies is currently unknown but is being investigated in a current paper. The time series 

comparison reported the highest over-prediction for the three years.  

For the month of April 2014, the model predicted 1-2 ppb changes in some places such as Georgia, 

South Carolina, Florida and Kansas; while 1 ppb effects in Georgia, Florida, Alabama, North and 

South Carolina, northern Mexico and southwestern Canada were predicted for May, and minimal 

impacts for June 2014. The model predicted a 1-2 ppb impact in southeastern Oregon, 

northwestern Nevada and southern Idaho during July 2014, while in August, 1-3 ppb changes 

occurred in western California, central Oregon, Idaho, southwestern Canada and southern Georgia. 

Minimal changes were predicted in September but 1 ppb changes over Georgia, Alabama and 

Mississippi were modeled for October. 

Model-measurement comparisons and biomass burning impacts of PM2.5 

Broadly in 2012, the model was unable to capture the high PM2.5 concentrations across the 

continental U.S. For example, in-situ data for April 2012 indicate concentrations of 10-12 µg m-3 

all across the eastern U.S., including southeastern Texas. Additionally, there are a couple of places 

in Georgia, New Mexico and California where the in-situ PM2.5 concentration was greater than 20 

μg m-3. The model under-predicted in most of these places but is broadly able to capture the spatial 

variations across the eastern U.S. However, it is unable to capture the extreme events that result in 

PM2.5 concentrations greater than 20 μg m-3. It will be interesting to understand what is causing 

the model-measurement error and poor correlation therein. Hence as part of an ongoing study, we 

will perform model-measurement comparisons of the speciated components of PM2.5, which 

include sulfate, nitrate, and primary and secondary organic aerosol, and evaluate whether it is 

emissions, chemistry, meteorology or deposition that is the source of the error. Large PM2.5 impacts 

of up to 10 μg m-3 in southeastern Canada were predicted in July, 2012. In 2013, in-situ data show 

concentrations of 8-10 μg m-3 over the eastern U.S. reproduced well by the model. However, it 

still under-predicts in Texas and at several places in California, and also in Washington during the 

fall months. Biomass fires in southeastern Canada elevated PM2.5 concentrations there by 5-10 μg 

m-3 during the summer months of June and July 2013. In October 2013, changes of 5-10 μg m-3 

were predicted in eastern Texas, Louisiana, Alabama, Georgia, Idaho and southwestern Canada. 

In April 2014, elevated concentrations of ~ 10-20 μg m-3 are observed in the in-situ measurements 

over the eastern U.S. and over some stations in California. The model does a good job for 

reproducing the concentration values less than or 12 μg m-3 but is unable to capture higher 
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concentrations. Impacts of 5-6 μg m-3 predicted over the Midwest for this month. The model 

significantly under-predicted in June when the biomass impact was minimal, indicating that 

probably error in biomass emissions was not the potential cause for model-measurement error. 

Possible Future Biomass Impact Works 

Extending the current simulation episode 

As part of the future study, we will include the summer ozone seasons in the years 2011 and 2015 

as part of our simulations. This is important because 2011 was a major forest fire year in Texas. 

Additionally, there was a significant fire event in Bastrop County in Texas in 2015 

(http://www.cnn.com/2015/10/15/us/bastrop-fire-texas-hidden-pines-wildfire/). Simulating these 

fire events will help us understand the impacts they had on regional air quality. In this space, we 

will continue on our current study by using the WRF-Chem plume rise approach, grid nudging and 

dynamic chemical boundary conditions. Additionally, we will conduct an evaluation of speciated 

PM2.5 components as compared to aggregate PM2.5 done in this study. 

Solubility basis set 

Biomass burning produces copious amounts of water soluble organic compounds since they are 

highly oxygenated. Some examples include aldehydes such as formaldehyde and acetaldehyde. 

We calculated the Henry’s Law constants for around 200 compounds which included aromatics, 

straight, branched and cyclic alkanes, alkenes, alkynes and oxygenated compounds such as 

aldehydes and ketones. The calculations were conducted using the EPA’s Estimation Program 

Interface (EPI) suite. Our results indicated that the Henry’s Law constants for aromatics were ~ 

102 M atm-1, branched alkanes ~10-1 M atm-1
, cyclic alkanes ~10 M atm-1. The values for alkenes 

and alkynes ranged from 1 to10 M atm-1. However, the oxygenates ranged from 103 to106 M atm-

1, indicating that they are the most soluble of all compounds. These could result in the formation 

of aqueous-phase secondary organic aerosol. In this space, it will be helpful to construct a 

solubility basis set (SBS) based on the Henry’s Law constants of the model species classes. The 

approach will be similar to the Volatility Basis Set concept developed by Donahue et al. (2006). 

Since model species are usually lumped, we will use the approach of Carlton and Turpin to 

evaluate the classes; they did a calculation for SAPRC99 species. 

Hodzic et al. (2014) indicated that H is a decreasing function of log10C
*. However, it must be noted 

that the saturation concentrations decrease with oxidation due to increasing O:C ratio which 

increases the polarity (and hence solubility) of the organic vapors. In other words, solubility is not 

dependent on alone log10C
*, it is a joint function of O:C ratio and log10C

*. For this study, we will 

first create a 1-D solubility basis set (SBS) based first on Henry’s Law constants, and use the SBS 

to analyze field campaign data such as those from CalNex, TexAQS, SHARP, 

MIRAGE/MILAGRO, ICARTT, and SOAS. Hodzic et al. (2014) indicated that H is a decreasing 

function of log10C
*. However, it must be noted that the saturation concentrations decrease with 

oxidation due to increasing O:C ratio which increases the polarity (and hence solubility) of the 

organic vapors. In other words, solubility is not dependent on alone log10C
*, it is a joint function 

of O:C ratio and log10C
*. We will study the conceptual behavior of the SBS with temperature, 

similar to the studies of the general VBS (Donahue et al., 2006) and source-specific ones (e.g., 

Roy and Choi, 2015). The next step would be to build an SBS off the current 2-D VBS developed 

http://www.cnn.com/2015/10/15/us/bastrop-fire-texas-hidden-pines-wildfire/
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by Koo et al. (2014). This VBS is based on log10C
* and O:C ratio. Here, we will use the 

parameterization described by Hodzic et al. (2014) to relate H with log10C
*
. The simulation data 

of Hodzic et al. (2014) are available online; we will use this data to develop a correlation between 

H and O:C ratio, to finally derive a joint function of solubility distribution as a function of log10C
* 

and O:C ratio. In other words, Henry’s Law based SBS will be parameterized from the 2-D VBS; 

relating Henry’s Law as a function of log10C
* and O:C ratio. 

Figure 87: Comparison of Henry's Law constants. Left panel: cyclic alkanes; right panel: 

oxygenated compounds. 

STOPS model for fire impacts 

This study investigates the impact of wildfire emissions on the upper troposphere chemistry and 

radiative forcing. We conduct WRF-CMAQ simulations with the Fire INventory from NCAR 

(FINN) biomass burning emissions inventory to reproduce wildfire events that occurred during the 

Deep Convective Clouds and Chemistry (DC3) field campaign period (15 May-30 June 2012). 

Several sensitivity simulations are conducted using STOPS, a computationally efficient modeling 

tool, to determine the best injection height and timing of wildfire emissions, which make the most 

accurate simulation result compared to aircraft measurement. We quantitatively analyze the impact 

of wildfire plumes on the enhanced CO, O3, and PM concentrations at the upper troposphere and 

also examine their contribution to the changes in radiative forcing.  
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Figure 88: Comparison of CO concentrations using base model and STOPS (indicated by Biomass 

Burning).The STOPS version clearly is able to capture the peaks better. 

Impacts of biomass burning on ammonia, sulfate and nitrate 

Figure 89 plots a preliminary result showing the impact of biomass burning on ammonia 

concentrations. Changes of 0.1 ppbv are predicted for the southeastern U.S. and Midwest, with 

~0.4 ppbv predicted in Alabama. We will evaluate these changes over a longer simulation episode 

(2011-2015) as part of the future work. 

 

Figure 89: Effect of biomass burning on ammonia concentrations in October, 2014 (preliminary 

result). 
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Impact of plume vertical profile on surface and lower tropospheric ozone 

 

Figure 90: CO impacts in October 2013. 

Figure 90 shows the carbon monoxide impacts using the WRF-Chem plume rise approach, 

showing significant impacts over the southeastern U.S. and Canada. We will evaluate how using 

different plume rise approaches affects model-measurement comparison for vertical ozone, PM2.5 

and CO profiles as part of a continuing study. 

Effect of grid resolution biomass impacts: HOx and ozone chemistry at 1 km and 

4 km. 

The spatial allocation of emission inventory using finer resolution grids allows consideration of 

detailed emission features. At heavily polluted areas, such as around an industrial power plant, 

coarse model grids generally average the high emissions with nearby areas, yielding an 

unexpectedly high emission density for the neighboring areas. Spatial allocations of emissions to 

model grids at different resolutions will result in differences in predicted concentrations of 

pollutants. As shown in Fig. 91, the CMAQ simulated NOx spatial distributions are quite different 

between 1 km and 4 km grids. We can see in the 1 km case high simulated NOx concentrations are 

matched well with highways in urban areas; and large nonlinearity of high simulated values are 

shown at airports and industrial point sources (Fig. 91-a). The 4 km case also shows high simulated 

NOx at urban and industrial regions (Fig. 91-b); however it lacks the detailed textures which are 

clearly shown in finer resolution. Magnitudes of peak simulated NOx in the1 km case are also 

bigger than in the 4 km case. Simulated O3 is relatively low at peak simulated NOx grid cells, which 

could be represented as NOx-saturated places. Simulated O3 hotspots are similar in the 1 km and 4 

km cases. In the high NOx environment, more HO2 can react with NO, so HO2 are relatively lower 

at urban and industrial regions, especially along highways and at industrial facilities (Figs. 91-e 

and f). Grid resolution impacts on low simulated HO2 are similar to on peak simulated NOx. 
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Biomass burning events can produce large amount of VOC emissions. We expect different spatial 

features of pollutants will be discovered around burning areas at different grid resolutions. 

 

Figure 91: Spatial comparisons of surface NOx, O3 and HO2 at different grid resolutions at 14 

CST on September 12th, 2013 at Houston, TX: (a) 1-km with CAMS NOx; (b) 4-km with CAMS 

NOx; (c) 1-km with CAMS O3; (d) 4-km with CAMS O3; (e) 1-km HO2; (f) 4-km HO2. 

 

Effect of biomass burning on human health 
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Effective assessment of health and cost effects from air pollution associated with wildfire events 

is critical for supporting sustainable management and policy analysis to reduce environmental 

damages. In this proposed study, the health impact of biomass burning events over the continental 

U.S. is studied using combined air quality and health impact modeling. Through the current TCEQ 

project, air quality modeling scenarios including biomass burning emissions were conducted using 

the Community Multiscale Air Quality (CMAQ) modeling system from 2012 to 2014 with a spatial 

resolution of 12 km. The EPA’s GIS-based computer program, Environmental Benefits Mapping 

and Analysis Program - Community Edition (BenMAP-CE) is employed to address an inclusive 

figure of health and cost impact caused by changing ambient ozone and PM2.5 concentrations due 

to the fire events. The basis of BenMAP-CE is the use of a damage-function approach to estimate 

the health impact of an applied change in air quality by comparing a biomass burning scenario (the 

one that includes wildfire events) with a baseline scenario (without biomass emissions). The major 

factors influencing such an approach are population, exposure to the pollutants, adverse health 

effects of a specific pollutant, and consequently economic costs. This study also examines how 

biomass burning across the U.S. (including Texas) influences people’s health in different months, 

seasons and regions, and  the cost impacts of wildfire events during these periods. Since biomass 

burning events result in higher ozone and PM2.5 concentration values in urban regions due to long-

range transport, preliminary results indicate that wildfire events cause a considerable increase in 

incident estimates and costs. This study demonstrates that BenMAP-CE can be successfully 

utilized as a proper tool to obtain health and cost impact of biomass burning events. 

 

Figure 92: Deaths as the results of respiratory diseases in Houston from the EPA’s BenMAP 

health assessment using the CMAQ simulation results and observed Centers for Disease Control 

and Prevention (CDC) reports. 
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Appendix A 

List of standard CMAQ variables (Gas phase species) 

Var_Name Unit Var_Name Unit 

NO2 ppmv NO ppmv 

O ppmv O3 ppmv 

NO3 ppmv O1D ppmv 

OH ppmv HO2 ppmv 
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N2O5 ppmv HNO3 ppmv 

HONO ppmv PNA ppmv 

H2O2 ppmv XO2 ppmv 

XO2N ppmv NTR ppmv 

ROOH ppmv FORM ppmv 

ALD2 ppmv ALDX ppmv 

PAR ppmv CO ppmv 

MEO2 ppmv MEPX ppmv 

MEOH ppmv HCO2 ppmv 

FACD ppmv C2O3 ppmv 

PAN ppmv PACD ppmv 

AACD ppmv CXO3 ppmv 

PANX ppmv ROR ppmv 

OLE ppmv ETH ppmv 

IOLE ppmv TOL ppmv 

CRES ppmv TO2 ppmv 

TOLRO2 ppmv OPEN ppmv 

CRO ppmv MGLY ppmv 

XYL ppmv XYLRO ppmv 

ISOP ppmv ISPD ppmv 

TERP ppmv SO2 ppmv 

SULF ppmv ETOH ppmv 

ETHA ppmv CL2 ppmv 

CL ppmv HOCL ppmv 

CLO ppmv FMCL ppmv 

HCL ppmv BENZENE ppmv 

BENZRO2 ppmv SESQ ppmv 

List of standard CMAQ variables (Aqueous phase species) 

Var_Name Unit Var_Name Unit 

ASO4J  µg m-3 ASO4I  µg m-3 

ANH4J            µg m-3 ANH4I µg m-3 
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ANO3J  µg m-3 ANO3I µg m-3 

AALKJ µg m-3 AXYL1J µg m-3 

AXYL2J  µg m-3 AXYL3J µg m-3 

ATOL1J µg m-3 ATOL2J µg m-3 

ATOL3J µg m-3 ABNZ1J µg m-3 

ABNZ2J  µg m-3 ABNZ3J µg m-3 

ATRP1J µg m-3 ATRP2J µg m-3 

AISO1J µg m-3 AISO2J µg m-3 

ASQTJ  µg m-3 AORGCJ µg m-3 

AORGPAJ µg m-3 AORGPAI µg m-3 

AECJ µg m-3 AECI µg m-3 

A25J  µg m-3 ACORS µg m-3 

NUMATKN µg m-3 ASOIL µg m-3 

NUMACC µg m-3 NUMCOR  µg m-3 

SRFATKN µg m-3 SRFACC µg m-3 

SRFCOR µg m-3 AH2OJ µg m-3 

AH2OI  µg m-3 ANAJ µg m-3 

ACLJ µg m-3 ACLI µg m-3 

ANAK µg m-3 ACLK µg m-3 

ASO4K  µg m-3 ANH4K µg m-3 

ANO3K µg m-3 AH2OK µg m-3 

AISO3J µg m-3 AOLGAJ  µg m-3 

AOLGBJ µg m-3 NH3 µg m-3 

SV_ALK µg m-3 SV_XYL1 µg m-3 

SV_XYL2  µg m-3 SV_TOL1 µg m-3 

SV_TOL2 µg m-3 SV_BNZ1 µg m-3 

SV_BNZ2 µg m-3 SV_TRP1  µg m-3 

SV_TRP2 µg m-3 SV_ISO1 µg m-3 

SV_ISO2 µg m-3 SV_SQT µg m-3 
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List of deliverables 

(a) Base 2011 NEI inventory, processed by SMOKE: speciated into CB05, gridded into 12 km 

domain over the Continental United States, and allocated temporally. 

(b) FINN inventory re-gridded into CMAQ format and speciated into CB05 (mapped from 

MOZART); evaluated with two plume rise approaches. 

(c) Biogenic emissions input files from BEIS. 

(d) WRF-generated meteorological fields. 

(e) CMAQ model output with and without biomass emissions. 

(f) Model output plots both these cases, along with difference plots. 

Appendix C 

WRF Namelist 

&time_control 

 run_days                            = 250, 

 run_hours                           = 0, 

 run_minutes                         = 0, 

 run_seconds                         = 0, 

 start_year                           = 2014,  

 start_month                         = 03, 

 start_day                           = 24, 

 start_hour                          = 00, 

 start_minute                        = 00,  

 start_second                        = 00,  

 end_year                           = 2014,  

 end_month                         = 11, 

 end_day                            = 07, 

 end_hour                           = 00, 

 end_minute                         = 00, 

 end_second                          = 00, 

 interval_seconds                    = 10800 
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 input_from_file                     = .true., 

 history_interval                    = 60, 

 frames_per_outfile                  = 1, 

 restart                             = .false., 

 restart_interval                    = 9999999, 

 io_form_history                     = 2 

 io_form_restart                     = 2 

 io_form_input                       = 2 

 io_form_boundary                    = 2 

 debug_level                         = 0 

 auxinput11_interval_s               = 1800,  

 auxinput11_end_h                    = 99999,  

 auxinput4_inname                    = "wrflowinp_d<domain>", 

 auxinput4_interval                  = 180,  

 io_form_auxinput4                   = 2 

 / 

&domains 

 time_step                           = 90, 

 time_step_fract_num                 = 0, 

 time_step_fract_den                 = 1, 

 max_dom                             = 1, 

 e_we                                = 470,  

 e_sn                                = 310,   

 e_vert                              = 28,  

 p_top_requested                     = 10000, 

 num_metgrid_levels                  = 30, 

 num_metgrid_soil_levels             = 4, 
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 dx                                  = 12000,  

 dy                                  = 12000,  

 grid_id                             = 1,   

 parent_id                           = 0,    

 i_parent_start                      = 1,    

 j_parent_start                      = 1,    

 parent_grid_ratio                   = 1,    

 parent_time_step_ratio              = 1,    

 feedback                            = 1, 

 smooth_option                       = 0 

 eta_levels                          = 1.000, 0.996, 0.990, 0.980, 0.970, 

                                       0.960, 0.950, 0.940, 0.930, 0.920, 

                                       0.910, 0.895, 0.880, 0.865, 0.850, 

                                       0.825, 0.800, 0.775, 0.750, 0.720, 

                                       0.660, 0.570, 0.475, 0.370, 0.250, 

                                       0.145, 0.045, 0.000 

 / 

&physics 

 mp_physics                          = 3,    

 ra_lw_physics                       = 1,    

 ra_sw_physics                       = 1,    

 radt                                = 12,    

 sf_sfclay_physics                   = 1,    

 sf_surface_physics                  = 2,    

 bl_pbl_physics                      = 1,   

 bldt                                = 0,    

 cu_physics                          = 1,     
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 cugd_avedx                          = 1, 

 cudt                                = 5,    

 isfflx                              = 1, 

 ifsnow                              = 1, 

 icloud                              = 1, 

 surface_input_source                = 1, 

 num_soil_layers                     = 4, 

 sf_urban_physics                    = 0,   

 sst_update                          = 0, 

 / 

&fdda 

 grid_fdda                           = 1,  

 gfdda_inname                        = "wrffdda_d<domain>", 

 gfdda_end_h                         = 99999,    

 gfdda_interval_m                    = 180,   

 fgdt                                = 0,   

 if_no_pbl_nudging_uv                = 0,    

 if_no_pbl_nudging_t                 = 0,    

 if_no_pbl_nudging_q                 = 0,    

 if_zfac_uv                          = 0,    

  k_zfac_uv                          = 10,    

 if_zfac_t                           = 0,   

  k_zfac_t                           = 10,    

 if_zfac_q                           = 0,    

  k_zfac_q                           = 10,   

 guv                                 = 0.0003,   

 gt                                  = 0.0003,   
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 gq                                  = 0.0003,   

 if_ramping                          = 1, 

 dtramp_min                          = 60.0, 

 io_form_gfdda                       = 2, 

 grid_sfdda                          = 0, 

 sgfdda_inname                       = "wrfsfdda_d<domain>", 

 sgfdda_end_h                        = 72, 

 sgfdda_interval_m                   = 180, 

 io_form_sgfdda                      = 2, 

 / 

&dynamics 

 w_damping                           = 1, 

 diff_opt                            = 1, 

 km_opt                              = 4, 

 diff_6th_opt                        = 0,   

 diff_6th_factor                     = 0.12,   

 base_temp                           = 290. 

 damp_opt                            = 0, 

 zdamp                               = 5000.,  

 dampcoef                            = 0.2,   

 khdif                               = 0,  

 kvdif                               = 0,   

 non_hydrostatic                     = .true.,  

 moist_adv_opt                       = 1,   

 scalar_adv_opt                      = 1,   

 / 
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 &bdy_control 

 spec_bdy_width                      = 5, 

 spec_zone                           = 1, 

 relax_zone                          = 4, 

 specified                           = .true.,  

 nested                              = .false.,  

 / 

  &grib2 

 / 

  &namelist_quilt 

 nio_tasks_per_group = 0, 

 nio_groups = 1, 

 / 

 


